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CHAPTER 1: GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation presents the research results focused on the class of receptors termed 

integrins. The primary goal of the work is to understand the lateral dynamics of integrins 

using single particle tracking to elucidate how other cellular factors affect integrins’ lateral 

diffusion.  

The dissertation is organized in five chapters and one appendix. The first chapter 

provides the general introduction to set up the background on various topics that will 

facilitate the understanding of subsequent chapters. The chapter highlights the research 

motivations, and a literature review on areas such as the cell membrane, diffusion theory, 

integrins, and fluorescent probes used for labeling proteins. Two popular experimental 

methods for measuring the lateral diffusion properties of proteins in the cell membrane are 

single particle tracking (SPT) and fluorescence recovery after photobleaching (FRAP). 

Finally the various analysis methods employed for the analysis of single particle tracking 

data are discussed.  

Extracellular ligand-receptor binding is one of the important interactions for signal 

transduction across the cell membrane. Chapter 2 is a published article in European 

Biophysics Journal that reports how the binding of extracellular ligand to integrins with 

different ligand affinities affects integrins’ lateral diffusion. Similarly, the association of 

cytoplasmic and membrane proteins to integrins is an inevitable event in the crowded cellular 

environment, and these interactions are essential for integrin function. Chapter 3 and 4 

discuss how selected cytoplasmic and membrane proteins influence integrins' lateral 
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diffusion. Chapter 3 is a published article in Analytical Bioanalytical Chemistry journal. 

Finally, Chapter 5 is a general conclusion summarizing this dissertation. 

There is an appendix to this thesis. The research work related to this appendix was 

performed at Genentech during the summer of 2013 as a part of curriculum practical training 

under the supervision of Dr. Jane Li. The project involves the use of near infrared 

spectroscopy in tandem with chemometric analyses for the development of a comprehensive 

model to determine water content in pharmaceutical tablets. The work has been published in 

the Journal of Biomedical and Pharmaceutical Analysis.  

 

Research motivations and objectives 

It is well established that a cell membrane and the receptors embedded in the cell 

membrane serve a multitude of functions in living cells. The cell membrane acts as an 

effective barrier to selectively transport macromolecules in and out of the cell for effective 

communication and nourishment. Receptors are the proteins that relay signals in and out of 

the cell and are fundamental for proper cellular function. For several decades, scientists have 

been pursuing the investigation of cell membranes and receptors to fully understand their 

biological importance, molecular design and organization, and the relation with other 

constituents in their environment. Cell membrane and receptors are studied such extensively 

because nearly all diseases and the therapeutic targets to many diseases somehow involve the 

membrane and receptors. The aim of this research is to focus on an important class of 

receptors termed integrins, whose aberrant function is known to be associated with multiple 

diseases such as cancer metastases, angiogenesis, inflammation, fibrosis, and thrombosis [1-
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4]. Integrins primary function includes cell-extracellular matrix adhesion, bi-directional 

signaling, cell migration, growth and survival. 

A comprehensive understanding of the structure, signaling processes, and factors 

affecting the lateral dynamics of receptors is essential to develop new, or improve existing, 

therapeutic drugs. Several advanced analytical techniques such as electron microscopy, X-ray 

crystallography, and Nuclear Magnetic Resonance spectroscopy have successfully provided 

detailed information on the structure and composition of the cell membrane, many receptors 

and cellular components. However, the understanding of the interaction and lateral dynamics 

of receptors and other molecular components in the cell membrane and their organization in 

two or three dimensions to form fully functioning living cells is still lacking.  This is because 

the aforementioned techniques are not suitable to perform lateral dynamics studies of 

receptors in the live cell membrane.  

The focus of this dissertation is understanding integrins’ interaction with both 

downstream and upstream effectors, such as extracellular ligand, selected cytoplasmic and 

membrane proteins in the cell membrane by probing the lateral dynamics of integrins. The 

lateral mobility is essential for integrins’ function. Lateral movement allows integrins to 

associate with extracellular ligand, and other membrane and cytoplasmic proteins to incite 

biological activity such as signaling and downstream effects.  

Non-invasive fluorescence-based single particle tracking (SPT), fluorescence 

recovery after photobleaching (FRAP), and the molecular biology technique called RNA 

interference are the main tools utilized in this work to address the interaction of integrins 

with other important cellular components. SPT and FRAP provide information on the lateral 
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mobility of integrins in the cell membrane and RNA interference selectively reduces the 

expression of a protein of interest in the cell.  

 

Literature Review 

Cell membrane  

In 1972, Singer and Nicholson proposed a fluid mosaic model for the cell membrane 

that described the structure and functions of the membrane. According to the fluid mosaic 

model, the membrane is made up of a two dimensional lipid bilayer where components such 

as proteins, carbohydrates, and cholesterol are able to change their position without altering 

the membrane integrity [5,6]. Proteins are either fully integrated or peripherally attached as 

shown in Figure 1. Proteins play an important role in carrying out various cellular functions 

such as signaling, transporting ions and nutrients, and providing anchorage to the 

cytoskeleton.  

 

Figure 1: A structure of the cell membrane as described by the fluid mosaic model: a fluid 

combination of phospholipids and proteins. (Figure obtained and modified from reference 

[6]) 
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Diffusion theory 

One of the important factors in controlling the dynamics, structure, and functioning of 

the cell membrane is the lateral diffusion of membrane proteins and lipids [7-9]. Therefore, 

utilizing the general structural framework of fluid mosaic model, the theoretical description 

for the lateral Brownian diffusion of proteins and lipid molecules in a biological membrane 

was developed by Saffman and Delbruck in 1975 using a continuum hydrodynamic model 

(Equation 1) [10].  

,                                   (1) 

Where D is the diffusion coefficient, k is Boltzmann constant, T is absolute temperature, ηm 

is membrane viscosity, ηw is viscosity of surrounding medium, h is thickness of the 

membrane and ‘a’ is the radius of membrane component. Calculated values are on the order 

of 10
-8

 cm
2
/s for a typical membrane protein. However, the lateral diffusion of proteins in the 

cell membrane is often slower than predicted by the Saffman and Delbruck equation and the 

experimentally measured value in model solid-supported lipid bilayers [11]. This could be 

due to many factors such as membrane proteins interaction with extracellular and 

cytoskeleton/cytoplasmic proteins, molecular crowding, or membrane confinement to 

domains of varying size, all of which limit lateral diffusion.  

The developments in optical microscopy, labeling probes, sensitive detectors, 

automated image analysis, and particle tracking software have made it possible to observe the 

movements of a single biomolecule in the live cell membrane with nanometer level accuracy 

[12]. Therefore, over time the simple picture of the fluid mosaic model has evolved with 
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increasing information obtained from the nano-scale dynamics of proteins and lipids in a 

heterogeneous membrane. The concepts of lipid rafts, nanodomains, confinement zone, 

caveolae, and pits have appeared in the membrane picture resulting in models of non-random 

molecular distribution (Figure 2) [13]. With the help of optical microscopy techniques such 

as SPT, FRAP, and fluorescence correlation spectroscopy (FCS), it has been understood that 

not all membrane proteins diffuse freely as the results of anchorage to the cytoskeleton or 

incorporation into large oligomeric or supramolecular complexes [14,12].  

 

Figure 2: Cell membrane structure with protein and nanodomain organization. (Figure 

adapted and modified from reference [13]) 

 

Integrins 

Integrins’ lateral mobility and rearrangement is essential for its primary function of 

cell-extracellular matrix adhesion, cell-cell adhesion, and signaling [15-20]. Integrins are 

type 1 transmembrane heterodimeric proteins that consists of non-covalently associated α and 

β subunits (Figure 3).To date, there are 24 human and 5 Drosophila integrins identified [2]. 

Integrins are highly conserved from invertebrates to vertebrates and are structurally, 
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immunochemically, and functionally related to each other [21]. Integrins' ectodomain 

participates in extracellular matrix protein or ligand recognition, whereas the cytoplasmic 

tails interact directly or indirectly with the cytoskeleton signaling network [22]. Integrins’ 

adhesiveness is dynamically regulated through inside-out signaling primed by intracellular 

components.  

 

Figure 3: Integrin structure showing two subunits that consists of large extracellular domain, 

short transmembrane domain, and short cytoplasmic domain.  

 

Fluorescence techniques to measure lateral diffusion of membrane receptors 

One of the most widely used spectroscopic contrast mechanism at the single molecule 

level is fluorescence because of relatively high quantum efficiency and sensitivity of the 

process compared to other possible contrast mechanisms [23]. Fluorescence microscopy has 

become the method of choice for many experiments in biology, chemistry, and physics due to 

its commercial availability, non-invasiveness, and biocompatibility. Similarly, the 
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availability of new detectors, light source, fluorescent dyes and labeling chemistries has 

made fluorescence microscopy techniques increasingly popular. Particularly in 

cellular/molecular biology, single particle tracking (SPT), fluorescence recovery after 

photobleaching (FRAP), fluorescence resonance energy transfer (FRET), and fluorescence 

correlation spectroscopy (FCS) techniques that utilize the fluorescence principle, have 

revealed new and interesting dynamic and structural information of receptors.  

 

Fluorescence principle 

Fluorescence is the emission of light at the higher wavelength region compared to the 

excited wavelength region of light when a molecule is excited to the higher energy state. 

Because of the difference between emission and excitation wavelength, known as a Stokes 

shift, emitted light from the objects of interest can be filtered out using appropriate optics. 

Alexander Jablonski in the 1930s explained the fluorescence phenomenon in the form of 

diagram showing the details of the excitation and emission process as shown in figure 4.   

 

Figure 4: Jablonski diagram showing fluorescence mechanism.  
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Fluorescence Recovery after Photobleaching (FRAP) 

 FRAP and SPT are the two techniques that have been extensively used to measure 

the lateral diffusion of proteins in the cell membrane. FRAP measures the ensemble diffusion 

of fluorescently-tagged receptors. In a FRAP experiment, an intense laser pulse is used to 

irreversibly photobleach the fluorescently-tagged receptors in a micrometer-size area of the 

membrane and subsequent recovery of the fluorescence signal due to diffusion from the 

surrounding unbleached regions to the bleached region is monitored [24]. The data are 

generally analyzed by fitting the recovery curve to the equation derived for different modes 

of motion yielding diffusion parameters such as mobile fraction and diffusion coefficient. 

Since FRAP provides a snapshot of an ensemble of receptors to calculate lateral mobility, it 

might be insensitive to important subpopulations of receptors that exhibit different modes of 

motion.  

 

Single Particle Tracking (SPT) 

SPT has become a method of choice for many scientists for probing the organization 

and dynamics of receptors in the cell membrane. SPT has approximately two orders of 

magnitude higher spatial resolution compared to FRAP, which would enable observation of 

molecular motion in domains smaller than the diffraction limit of light [25]. The biggest 

advantage of SPT is that it provides information of heterogeneity in the physical, chemical, 

or biological properties of a single receptor that is otherwise lost in ensemble measurements 

such as FRAP. SPT helps to resolve the modes of motion of individual receptor such as 

Brownian, directed, anomalous, or immobile. In SPT, a fluorescent probe or colloidal 
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gold/beads is attached to the molecule of interest and the labeled molecule’s movement is 

tracked using video microscopy.  

One of the important requirements for single particle tracking is to have a high signal-

to-noise ratio, which is generally achieved by the use of high efficiency optics, bright 

fluorescent tags, and sensitive detectors such as charged coupled devices. Moreover, SPT is 

achieved by using a low concentration of labeling probe so that the detection and tracking of 

two molecules is not convoluted in a single diffraction-limited spot. Once the movement is 

recorded, careful analysis of the trajectories is essential to extract diffusion parameters and 

modes of motion. The data analysis of SPT is discussed in a later section.  

 

Fluorescent probes for SPT  

Nanoparticles, colloidal gold, latex beads, and fluorescent tags have been used to 

label receptors for SPT experiments. Fluorescent tags consist of organic dye molecules, 

fluorescent proteins such as green fluorescent protein (GFP) or yellow fluorescent protein 

(YFP), and quantum dots. Before considering single receptor tracking using fluorescence 

microscopy, it is necessary to consider the size, photophysical properties such as quantum 

yield, photobleaching, blinking, and brightness of the fluorescent tag. Ideal fluorescent 

probes should have high extinction coefficients at the wavelength used for excitation, a high 

fluorescence quantum yield and have emission that is spectrally distinct from the excitation 

wavelength, resistance to photobleaching, and a smaller size so it has minimal effects on the 

diffusion properties of the species of interest [23].  

One of the fluorescent probes that offer unique photophysical properties that partially 

compensates for the weakness of dyes and fluorescent proteins is semiconductor quantum 
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dots (QDs). QDs have moderate size (15-20 nm including coating), resistance to 

photobleaching, bright fluorescence, and high signal-to-noise ratio that would increase spatial 

resolution and also can be tracked over long period of time [26,27]. QDs typically consist of 

a core and shell that are made up of semiconductor inorganic materials such as cadmium 

selenide, cadmium sulfide, or zinc selenide [28,27]. For biological applications QDs are 

coated with biocompatible surface coatings to increase water solubility and also to provide a 

linker to attach with biomolecules. One of the disadvantages of QDs is blinking, which 

hinders the process of forming the trajectories that are used to extract diffusion properties. 

Sophisticated tracking algorithms exist where QD blinking is not a significant problem, and 

can be used to identify and confirm a single particle observation.  

 

SPT data analysis 

Meaningful information from SPT data depends on the analysis method employed. 

Due to the lack of universal method for SPT data analysis, different labs have developed and 

employed different analysis method to extract information from the trajectories of a single 

particle [12]. Most SPT data has been computed in terms of mean square displacement 

(MSD) versus time and by analyzing the probability distribution of individual displacements 

[29-31].  

Generally SPT data analysis involves localization/detection, linking/tracking, and 

analysis as shown in figure 5.  There are various strategies that have been reported in the 

literature for localizing and tracking single particles [32-34]. In localization, the x and y 

coordinates of the center of particle attached to a molecule that moves in the two-dimensional 

membrane are extracted. Various methods such as cross-correlation, centroid identification, a 
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Gaussian fit, or a pattern recognition method have been reported in order to find the 

coordinates of the particles [35]. The accuracy of position determination by each method is 

influenced by the number of detected photons, background noise by autofluorescence, 

pixelation, and dark current. Each method is suitable based on the experimental system. A 

two-dimensional Gaussian fit provides the best results in terms of localization when 

considering a single molecule labelled with fluorescent probes that are smaller than 

microscopic resolution at relatively low signal to noise ratio (<4) [36]. However, 2D 

Gaussian fit relies on a particular shape and intensity distribution of the particles. In 

trajectory linking, the coordinates are linked using different automated algorithms such as 

nearest-neighbor-algorithm, feature point tracking, or multiple-hypothesis tracking 

[37,38,36]. A good algorithm to calculate trajectories should take into account the issues such 

as particle crossover, merge, split, interact, or blink. A multiple-hypothesis algorithm takes 

into account the most of the aforementioned issues in trajectory reconstruction [38]. A given 

algorithm has its advantage or disadvantage depending on the quantity of surface density of 

tracking molecules it can consider for linking without being computationally intense and time 

consuming. Finally in analysis, the mean square displacement is computed for each trajectory 

from the formula (equation 2) to analyze physical parameters such as diffusion coefficient 

and mode of diffusion.  
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Figure 5: Processing and analysis of SPT data (a) building trajectories, (b) classification of 

SPT trajectories (Figure obtained from reference [26]) 

 

, (2) 

 

where τ is the acquisition time between two successive frames, N is the total number of 

frames in the sequence, x and y are coordinates of the particle at a specific time lag, 0 < n < 

N/4 and 1 < i < (N-n).  

In SPT analysis, different groups differ in the way of classifying the trajectories and 

obtaining diffusion coefficient from calculated mean square displacement [12]. For example, 

Anderson et al. classified the experimental trajectory according to the model that best fit the 

shape of MSD vs time curve [39]. Kusumi and colleagues used the shape of the MSD curve 

in terms of the relative deviations by comparing the MSD behavior at short and long time 

lags [40].  A measure for the deviation of trajectory from free diffusion was determined by 

extrapolating a linear fit to the MSD at short time lags to longer time lags. Webb and 

collaborators used the anomalous diffusion exponent α obtained by fitting the log MSD vs 

log time curve to classify trajectories into different motion [41,42]. Simson et al. used the 
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analysis method where they classified trajectories as either confined or non-confined [43]. 

Trajectories were classified as non-confined if the particle remains in a region for duration of 

time that is considerably longer than a Brownian diffusing particle would stay. In all 

aforementioned analysis method, the more reliable classification can be obtained for the long 

trajectories if the particle didn’t change the mode of motion. However, most analysis 

methods lack the ability to detect transitions between modes of motion such as from 

Brownian to confined, local stops, acceleration and deceleration of particles in a single 

trajectory. Many aspects of data analysis have not become standard in the scientific 

community yet. So it is hard to argue which one is the robust method for SPT data analysis.  
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Abstract 

The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was 

studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) 

and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged 

integrins.  Integrins are ubiquitous transmembrane proteins that are vital for numerous 

cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high 

ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured 

by SPT, the integrin mobile fraction decreased by 22% and had a 4× slower diffusion 

coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are 

partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type 

integrins, the average of all diffusion coefficients measured by SPT was statistically similar 

to the ensemble FRAP results. A 75% slower average diffusion coefficient was measured by 

SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT 

measuring only ligand-bound integrins, while all ligand-bound and ligand-unbound integrins 

are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 
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99% for integrin expressing cells. The results prove that the ligand binding affinity affects 

the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP 

data.   

 

Keywords Single particle tracking, fluorescence recovery after photobleaching, Tiggrin-

functionalized quantum dot, αPS2CβPS integrins, S2 cells 

 

Abbreviations 

SPT Single Particle Tracking 

QDs Quantum Dots 

FRAP Fluorescence Recovery After Photobleaching 

MSD Mean Square Displacement 

LFA-1 Lymphocyte Function-associated Antigen 1 

 

Introduction 

 Integrins are an important family of cell surface receptors that maintain a dynamic 

flow of information between the external and internal environments for the survival, growth, 

proliferation, differentiation, and proper functioning of cells (Giancotti and Ruoslahti 1999; 

Hynes 2002). This signal transduction occurs by ligand binding to the integrins’ extracellular 

domain or through the stimuli received from chemokines, cytokines, and other intracellular 

proteins binding to integrins’ cytoplasmic domain (Hynes 2002). Integrins are composed of 

non-covalently associated α and β subunits. Each subunit is non-homologous to one another, 

but overall heterodimer structure is well-conserved throughout the animal kingdom (Takada 
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et al. 2007). An increasing number of results from X-ray crystallography, conformational 

specific antibodies, and mutation studies confirm that integrins undergo significant structural 

changes in response to ligand binding or intracellular signals (Luo et al. 2007; Jannuzi et al. 

2004). Similarly, several mutation studies have identified the important amino acids for 

dimer formation, association with intracellular proteins, ligand binding and regulation of 

ligand affinity (Luo et al. 2007; Bunch et al. 2006; Jannuzi et al. 2004). Integrins’ 

conformational changes can lead to higher ligand affinities, whereas lateral association into 

clusters can increase ligand binding avidity by providing multiple contact sites (Stewart and 

Hogg 1996; van Kooyk and Figdor 2000). Details of integrins’ lateral dynamics at the single 

receptor level are sparse. Many drugs target membrane proteins because of their accessibility 

from the exterior of cells, and aberrant integrin function is associated with numerous 

pathological conditions (Takada et al. 2007; Hillis and MacLeod 1996; Reddy and Mangale 

2003; Huveneers et al. 2007). Therefore, it is important to study factors that affect integrins’ 

lateral dynamics in the cell membrane. 

 To date, several analytical techniques have been employed to unravel the details of 

the lateral organization and dynamics of membrane proteins. The lateral mobility of receptors 

and lipids has been studied using fluorescence techniques such as fluorescence recovery after 

photobleaching (FRAP), fluorescence correlation spectroscopy, and single particle tracking 

(SPT) (Saxton and Jacobson 1997; Georgiou et al. 2002; Chen et al. 2006; Kovaleski and 

Wirth 1997). FRAP and fluorescence correlation spectroscopy provide an average response 

from many receptors, whereas SPT resolves the mode of motion for an individual receptor. In 

addition, the spatial resolution of SPT is approximately two orders of magnitude better than 

that of FRAP (Mirchev and Golan 2001).  Diffusion coefficients for proteins in a cell 
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membrane are 5-100 times slower than the values for proteins in an artificial bilayer as 

measured by FRAP (Saxton and Jacobson 1997). Similarly, Jacobson et al. reports diffusion 

coefficients vary around two-fold at different locations on a single cell, and ten-fold from one 

cell to the next (1984). Sources of diffusion heterogeneity may be obstruction by other 

proteins, intracellular components or the extracellular matrix or confinement in domains with 

different compositions than the bulk membrane (Saxton and Jacobson 1997). Feder et al. 

analyzed FRAP data using two models: Brownian diffusion with an immobile fraction and 

anomalous diffusion with only mobile receptors, and found that these different modes of 

motion could not be distinguished by FRAP (1996). SPT provides information on sub-

populations of receptors that would otherwise be indistinguishable by ensemble 

measurements. SPT shows heterogeneity exists in the dynamics of membrane receptors and 

the same proteins can exhibit both Brownian and anomalous motion (Anderson et al. 1992; 

Feder et al. 1996; Kusumi et al. 1993; Saxton and Jacobson 1997). Different optical 

techniques often use different probes to measure the lateral mobility of receptors due to their 

technical requirements. These probes may alter the property under study. Therefore, it is 

imperative to compare the results obtained from different techniques. 

 The effects of conformational state, clustering, cytoskeleton interactions, and cell 

differentiation on integrin diffusion have been studied (Bakker et al. 2012; Kucik et al. 2001; 

Chen et al. 2007). Bakker et al. used single dye tracking to demonstrate an intricate coupling 

between conformation and lateral diffusion of lymphocyte function-associated antigen 1 

(LFA-1, an integrin) (2012). After the reduction of extracellular Ca
2+

 to promote high-

affinity LFA-1, they observed an eight-fold increase in the percentage of immobile 

nanoclusters. Single particle tracking with 500-nm latex beads coated with an antibody, 
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which is not a ligand substitute, has been used to measure the diffusion of αllbβ3 integrins 

(Kucik et al. 2001). An α cytoplasmic domain mutation that increased the ligand binding 

affinity decreased the average diffusion coefficient and integrin mobile fraction. The large 

size of the probe relative to the integrin may have affected the lateral diffusion measurements 

through added mass or receptor cross-linking. Recently, bioconjugated QDs have been used 

to image the lateral diffusion of integrins at the single particle level (Chen et al. 2007). Using 

QDs conjugated with integrin antibodies, slow lateral diffusion (~10
-11

 cm
2
/s) of α4β1 

integrins on the surface of undifferentiated bone marrow derived progenitor cells (BMPCs) 

was measured. The diffusion coefficient increased (~10
-10

 cm
2
/s) after a 3-day incubation in 

differentiation medium. The authors hypothesize that the altered integrin dynamics results 

from restriction by direct links to microfilaments.  

Herein, SPT and FRAP were used to measure the changes in integrins’ lateral 

diffusion upon altered ligand affinity using a well-studied protein mutant. The wild-type 

(αPS2CβPS) and high ligand affinity mutant (αPS2CβPS-V409D) integrins were expressed 

in S2 cells. The αPS2CβPS-V409D integrin contains a single-point mutation in the 

extracellular ligand binding domain of the β subunit, and has an ~4-fold higher ligand 

binding affinity compared to αPS2CβPS (Bunch et al. 2006; Smith et al. 2007). Using a well-

characterized integrin mutant with a high ligand affinity overcomes issues associated with 

altering the composition of the extracellular medium (e.g. reducing the Ca
2+

 composition or 

increasing the Mn
2+

 composition) to alter ligand affinity, which may cause numerous 

changes to the composition or structure of the cell membrane, and indirect changes in the 

lateral mobility of the integrins. 16-nm QDs containing physisorbed RBB-Tiggrin, the 

recombinant version of the αPS2CβPS-ligand Tiggrin (Bunch et al. 2004; Fogerty et al. 1994; 
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Graner et al. 1998; Jannuzi et al. 2004), were used for SPT measurements to track the 

movement of individual integrins. QDs were chosen as the probe due to their small size, 

broad absorption and narrow emission bands, brightness, and resistance against 

photobleaching (Gao et al. 2005). The SPT data are compared to ensemble FRAP 

measurements using integrins tagged with Venus yellow fluorescent protein. The results 

show that different populations of receptors are studied with the two techniques, and that the 

lateral mobility of a subset of integrins depends on their ligand affinity.   

 

Materials and Methods 

Cell culture and preparation 

 All experiments were performed using Drosophila S2 cells transformed to express 

αPS2CβPS or αPS2CβPS-V409D integrins under the regulation of the heat shock protein 70 

promoter. Transfection methods and culture techniques have been previously described 

(Bunch and Brower 1992; Bunch et al. 1988; Zavortink et al. 1993). Briefly, cells were 

cultured in Shields and Sang M3 insect medium (Sigma-Aldrich, St. Louis, MO) with heat-

inactivated 10% fetal bovine serum (Irvine Scientific, Santa Ana, CA), 12.5 mM 

streptomycin, 36.5 mM penicillin, and 0.2 µM methotrexate (Fisher Scientific, Pittsburgh, 

PA) in a 22
o
C incubator. Integrin expression was induced with a 36

o
C heat shock followed 

by 3 h incubation at 22
o
C. Cells were then centrifuged at 600 × g for 3 min and resuspended 

in serum-free medium to a final concentration of 5×10
5 

cells/mL. Preparation of RBB-

Tiggrin-coated glass microscope slides have been previously described (Smith et al. 2007). 

Cells were allowed to spread on the ligand-coated glass slides for half an hour at room 

temperature in serum-free medium prior to incubation with ligand-coated QDs.  
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Preparation of ligand-coated QDs and incubation with cells 

 16-nm QDs functionalized with amine-derivatized polyethylene glycol (PEG), and 

with emission maxima at 605 nm were obtained from Life Technologies (Carlsbad, CA). 

Since the diameter of the QDs is similar to the integrins’ cross section (Takagi et al. 2002; 

Xiong et al. 2001), it is unlikely that more than one integrin is bound to a single QD (i.e., we 

are testing the role of affinity in altering integrin diffusion, and not avidity). The QDs were 

coated with a physisorbed layer of RBB-Tiggrin. The conjugation of positively charged 

amine-derivatized PEG QDs with net-negatively charged RBB-Tiggrin was performed by 

mixing a ratio of 1 QD to 20 RBB-Tiggrin in 10 mM phosphate buffer, pH 8.5 for 2 h 

(Medintz et al. 2003; Delehanty et al. 2006; Xiao et al. 2010; Mattoussi et al. 2000). The 

ligand-coated QDs (QD-RBB-Tiggrin) were stored in aliquots at 4
o
C prior to use, sonicated 

for 2 h before diluting to the required concentration, and were then used within half an hour 

to limit the aggregation of QDs. After cells were spread on the ligand-coated surface, they 

were rinsed and incubated with QD-RBB-Tiggrin diluted in BES Tyrodes buffer (200 mM 

BES, 10 mg/mL BSA, 1 mM CaCl2, 0.1 M MgCl2) at the concentration specified in the text 

for 30 min. Cells were rinsed and imaged with 20 mM BES Tyrodes buffer.   

Instrumentation 

 A Nikon Eclipse TE2000U microscope (Melville, NY) operating in wide-field, epi-

fluorescence mode with a 100× Plan Apo, 1.49 numerical aperture oil-immersion objective 

was used for all experiments. Fluorescence images were collected every 40 ms for a total of 

30 s using a PhotonMAX 512 EMCCD camera (Princeton Instrument, Trenton, NJ) and 

mercury lamp illumination. A filter set from Omega Optical (XF304-1, Brattleboro, VT) was 
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used for excitation (425/45 nm) and to collect the QD emission (605/20 nm). FRAP 

experiments were performed and the data analyzed as previously described (Sander et al. 

2012). A constrained diffusion with an immobile fraction model was found to best-fit all 

data. All imaging measurements were carried out at room temperature. 

QD binding specificity 

 To quantify the specificity of QD-RBB-Tiggrin binding, four S2 cell lines were used: 

one expressing αPS2CβPS integrins, a second expressing αPS2CβPS-V409D, a third that did 

not express αPS2CβPS integrins and a fourth that expressed an αPS2CβPS-Venus fusion 

protein. The number of QDs in the images collected using different QD-RBB-Tiggrin 

concentrations was quantified with the Image J version 1.45s Particle Tracker plugin 

developed by I.F. Sbalzarini and P. Koumoutsakos (2005). To verify the results, QDs were 

manually counted in some images.  

Localization and tracking of QDs 

 The Image J Particle Tracker plugin was used for the localization and tracking of 

single QD-RBB-Tiggrin complexes (Sbalzarini and Koumoutsakos 2005). A particle radius 

of 3 and cutoff value of zero were used. A displacement of 4-5 pixel was chosen based on the 

maximum step (Qian et al. 1991; Kevin et al. 2010). The intensity percentile ranged from 

0.1-1.7 depending on the image. A link range parameter of 4-5 was chosen to account for 

short quantum dot blinking events, which were used to confirm a single QD generated the 

track (Nirmal et al. 1996; Dahan et al. 2003).  Each trajectory was visually inspected to 

identify trajectories that likely resulted from more than one QD, which was rare. The 
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positional uncertainty of the localization was 14 nm as measured by imaging and analyzing 

stationary QDs.  

Data analysis 

 The mean-square displacement (MSD) for different time lags (τ) was calculated for 

each trajectory using the formula: 

         ,     (1) 

where τ is the acquisition time between two successive frames, N is the total number of 

frames in the sequence, x and y are coordinates of the particle at a specific time lag, 0 < n < 

N/4 and 1 < i < (N-n) are positive integers. The SPT trajectories were analyzed with a time-

dependent diffusion coefficient as described by Feder et al. (1996). The diffusion coefficient 

(D) is given by: 

)(
4

1 1 D  ,    (2) 

where Γ is the transport coefficient, τ is the time lag, and α is the time exponent. The value of 

Γ (intercept) and α (slope) for each trajectory was obtained by fitting the log MSD vs. log τ 

curve by linear regression with weighting to the standard deviation (Feder et al. 1996; Saxton 

and Jacobson 1997; Slattery 1995). The trajectories were classified into different modes of 

motion according to the α value: directed motion (α > 1.1), Brownian diffusion (0.9 ≤ α ≤ 

1.1), anomalous/constrained diffusion (0.1 ≤ α < 0.9), and immobile (α < 0.1) (Feder et al. 

1996; Ghosh and Webb 1994). The time-dependent diffusion coefficient at 1 s was calculated 

as Γ/4 for all trajectories with α > 0.1.  
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Results and Discussion 

Specific binding of QD-RBB-Tiggrin to integrin-expressing cells 

 The primary purpose of this study was to elucidate how the ligand binding affinity 

affected the lateral dynamics of integrins using single particle tracking, and to compare the 

results to those obtained by fluorescence recovery after photobleaching. The first step was to 

find conditions where the ligand-coated QDs specifically bound to integrin-expressing cells. 

Non-specific binding would influence the measurement of lateral diffusion, and could 

increase the fraction of immobile integrins. Specific binding was tested using transformed S2 

cells expressing αPS2CβPS or high ligand affinity αPS2CβPS-V409D integrins and non-

transformed S2 cells, which do not express detectable levels of αPS2CβPS integrins. A 

number of peptide or protein ligands containing the RGD-tripeptide αPS2CβPS binding 

domain were sequentially tested. Only the QDs containing a physisorbed layer of the 53-

amino acid RBB-Tiggrin (QD-RBB-Tiggrin) exhibited binding to the integrin-expressing 

cells (Fig. 1a, b) but no binding to the non-transformed S2 cells (Fig. 1c). Similar 

fluorescence patterns were observed for the QD-RBB-Tiggrin bound to integrin-expressing 

cells as observed for cells expressing an integrin-Venus fusion protein (Fig. 1d). Specifically, 

integrins are often concentrated at the periphery of the cell as demonstrated by the white 

arrows in Fig. 1d and a high concentration of QDs exhibit a circular pattern in Fig. 1a and to 

a minor extent in Fig. 1b. The bright region at the center of the cells in Fig. 1d was from 

intracellular integrins (Sander et al. 2012; Dibya et al. 2009). The lack of a high 

concentration of QDs in the center compared to other parts of the cell in Fig. 1a, b suggests 

that the QDs did not bind to intracellular integrins. Using 1 nM QD-RBB-Tiggrin an average 

of 11 QDs per cell was measured for the cells expressing αPS2CβPS integrins and the 
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average number decreased to 0.1 for non-transformed S2 cells at 1 nM QD-RBB-Tiggrin 

(Table 1). Thus, there is 1% non-specific binding at this concentration. 

As expected, the high ligand affinity αPS2CβPS-V409D integrins bound more QD-

RBB-Tiggrin (Fig. 1b) compared to the αPS2CβPS integrins (Fig. 1a) when measured at the 

same QD concentration. Comparing different QD-RBB-Tiggrin concentrations, a statistically 

similar number of QDs was counted using 1 nM QD-RBB-Tiggrin for αPS2CβPS integrin-

expressing cells and 0.5 nM QD-RBB-Tiggrin for αPS2CβPS-V409D integrin-expressing 

cells (Table 1).  

SPT classification of αPS2CβPS integrin motion  

 One hundred QD-RBB-Tiggrin trajectories, representing the motion of 100 

αPS2CβPS receptors, were recorded from a total of 25 cells. Three types of integrin-motion 

were distinguishable based on the shape of the MSD versus time plots (Fig. 2). Brownian 

diffusion results in a best-fit straight line with a positive slope (Fig. 2a), 

anomalous/constrained diffusion results in a curve that plateaus to a value representative of 

the diffusion constraints imparted on the receptor (Fig. 2b), and immobile integrin shows a 

constant MSD vs. time lag plot (Fig. 2c). A more accurate method to classify the mode of 

motion is based on the time exponent value, α, calculated from log MSD versus log time lag 

plots. From the total 100 αPS2CβPS trajectories, 40% were mobile and 60% were immobile 

(Table 2). Further classifying the mobile trajectories, 8% showed Brownian motion, and 31% 

showed anomalous/constrained motion with a time dependent diffusion coefficient. Only one 

trajectory with directed motion was measured. The average time-exponent for all mobile 

particles (α > 0.1) was 0.6 ± 0.3. The diffusion coefficient at 1 s was calculated for all mobile 

particles and ranged from nearly immobile to the theoretical value for two-dimensional 
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diffusion in a bilayer (0.004 to 21 ×10
-9

 cm
2
/s). The average diffusion coefficient at 1 s for all 

mobile particles was 2 ± 5 × 10
-9

 cm
2
/s (Table 2). 

All 40 mobile αPS2CβPS trajectories are shown in Fig. 3a.  Since the trajectories 

were measured from 25 different cells, the position of the trajectory on the graph depends on 

the location of the cell within the region of interest, the size of the cell, and the location of 

the QD in the cell.  The position of the trajectory on the cell was found by overlapping the 

white light image of the cell with the fluorescence image of the trajectory. All the trajectories 

exhibiting Brownian diffusion (i.e., with 0.9 ≤ α ≤ 1.1) were located at the periphery of the 

cells. In these cases, the tracks partially outline the edge of the cell.  The trajectories 

exhibiting constrained diffusion were located throughout the center portion of the membrane, 

but not at the edge of the cell. Constraints to integrin diffusion measured by SPT are the 

result of either heterogeneous membrane regions (e.g., lipid nanodomains/rafts or clustering) 

or interactions between integrin cytoplasmic domains and cytoplasmic proteins. Brownian 

diffusion measured at the edge of the cell may be the result of decreased membrane 

heterogeneity in this region or altered binding to cytoplasmic proteins at the edge of the cell.  

SPT classification of αPS2CβPS-V409D integrin motion 

 To determine if the integrins’ ligand affinity affects the diffusion coefficient and 

mobile fraction, trajectories were collected from 16 cells expressing high ligand affinity 

αPS2CβPS-V409D integrins. Out of 100 trajectories, 2% showed Brownian diffusion, 16% 

showed anomalous/constrained diffusion, and 82% were immobile (Table 2). The average 

diffusion coefficient at 1 s decreased 4-fold for the high ligand affinity integrins (0.5 ± 0.8 

×10
-9

 cm
2
/s) compared to the wild-type integrins. In addition, the mobile fraction reduced 

from 40% for αPS2CβPS to 18% for αPS2CβPS-V409D.  
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 The eighteen mobile trajectories observed from 16 different cells expressing 

αPS2CβPS-V409D integrins are shown in Fig. 3b. A qualitative comparison to the wild-type 

trajectories shown in Fig. 3a indicates that the αPS2CβPS trajectories that exhibited 

Brownian diffusion and traced a portion of the periphery of the cell were not measured for 

the αPS2CβPS-V409D integrin. Also based on the data graphed in Fig. 3, while the number 

of trajectories with anomalous/constrained diffusion decreased for the αPS2CβPS-V409D 

integrins, qualitatively there was no significant difference in the shape or position of these 

trajectories compared to the αPS2CβPS integrins. 

One plausible explanation for the decreased diffusion coefficient for αPS2CβPS-

V409D versus αPS2CβPS integrins is more clustering of the high ligand affinity integrins. 

Mutations that increase the integrins’ ligand affinity also result in more integrin clustering, as 

previously reported (Smith et al. 2007; Bunch et al. 2006). There is ~3-fold more energy 

transfer measured in a clustering assay for αPS2CβPS-V409D compared to αPS2CβPS 

integrins. The measurement did not enable the mechanism for the increased clustering to be 

determined.  For example, it is possible that the integrin clusters remained the same size, but 

more αPS2CβPS-V409D clusters formed. Alternatively, the number of clusters could stay the 

same, while their size increased. Finally for the sake of completeness, some combination of 

both may have occurred. The Saffman-Delbrück equation can be used to estimate the change 

in the diffusion coefficient for the extreme case of a single, unclustered integrin with a 5 nm 

radius added to a cluster containing 20 integrins (1975). Clusters larger than this could be 

observed in the optical image, but were not. In this case, the diffusion coefficient is estimated 

to decrease by 75% for the clustered integrin. The measured diffusion coefficient decreased 

by 75% for the αPS2CβPS-V409D integrin compared to the αPS2CβPS integrin. Given the 
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extreme case considered for the calculation, it is likely that integrin clustering was one reason 

for the decrease in the diffusion coefficient of the high ligand affinity integrin, but it may not 

be the only one.  

Other possible reasons for the decrease in the diffusion coefficient and mobile 

fraction observed for the high ligand affinity αPS2CβPS-V409D integrins are altered 

interactions with other membrane proteins or cytoskeletal proteins. If these interactions are 

with mobile species or are transient on the SPT time scale, the diffusion constraints would 

increase. On the other hand if the interactions are with immobile membrane or cytoplasmic 

proteins and are of a long duration on the SPT time scale, the integrin mobile fraction would 

decrease. Leitinger and Hogg found that a mutant LFA-1 missing the I domain, with 

characteristics that mimic high affinity integrins, preferentially localizes into lipid 

nanodomains in T lymphocytes (2002). The wild-type LFA-1 with a low ligand affinity does 

not preferentially localize into lipid rafts until after it was exposed to Mn
2+

 or phorbal esters, 

which have been shown to increase ligand affinity for a number of integrins. A differential 

role of cholesterol in the clustering of αPS2CβPS-V409D and αPS2CβPS integrins has been 

previously reported, and this suggests that cholesterol-enriched nanodomains are functionally 

important to these integrins (Dibya et al. 2010). If αPS2CβPS-V409D integrins with higher 

ligand binding affinity than αPS2CβPS exhibit altered partitioning into lipid nanodomains, 

this could have a role in altering the integrins’ diffusion coefficient or mobile fraction 

depending on the size of the domains and the temporal characteristics of the partitioning. 

Comparison of average SPT and FRAP diffusion parameters 

 FRAP measurements were collected using fluorescent-protein tagged integrins to 

compare the ensemble diffusion parameters to those obtained by SPT (Table 2 and 3). For 
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αPS2CβPS integrins, both the diffusion coefficient and the time exponent, α, for the mobile 

fraction were the same within the statistical uncertainty of the SPT and FRAP measurements. 

The αPS2CβPS mobile fraction and the αPS2CβPS-V409D diffusion coefficient, mobile 

fraction, and α are larger when measured by FRAP compared to SPT. The differences 

between the FRAP and SPT measurements can be interpreted based on the population of 

integrins being measured and the nature of the fluorescent probe as schematically shown in 

Fig. 4.  The FRAP experiment measures all integrin, whether they interact with ligand or not. 

The SPT measurement necessitates that the integrin under study be bound to ligand 

immobilized on the QD. Additionally, the population of integrins with Brownian diffusion at 

the periphery of the cell cannot be measured by FRAP, and the integrins measured by FRAP 

are in closer contact to the glass substrate than those measured by SPT (Fig 4). To these latter 

two points, more constrained diffusion may be expected for the FRAP measurement, but this 

would cause a decrease in  or the diffusion coefficient as measured by FRAP and this is not 

consistent with the experimental values (Table 2 and 3). Considering only the FRAP data 

(Table 3), there is no difference in the ensemble diffusion coefficient for αPS2CβPS and 

αPS2CβPS-V409D integrins. On the other hand, SPT reveals that a subset of ligand-bound, 

high ligand affinity integrins have a 75% slower diffusion coefficient than the subset of 

ligand-bound wild-type integrins.  

 Numerous studies report a slower diffusion coefficient measured by SPT than FRAP 

(Georgiou et al. 2002; Lee et al. 1991; Saxton and Jacobson 1997). This variability between 

FRAP and SPT has been attributed to the nature of the fluorescent probe: the mass and size 

of the QD (~2 MDa) is larger than the fluorescent protein (~27 kDa), while the fluorescent 

protein is covalently attached to the integrin—this modification has no affect on the 



www.manaraa.com

34 

 

 

integrins’ ligand affinity (data not shown). However, the differences in the diffusion 

coefficient measured by FRAP and SPT for the αPS2CβPS-V409D integrin is not likely from 

the probe since the same probe was used to study both αPS2CβPS and αPS2CβPS-V409D 

integrins, but no difference was measured for the αPS2CβPS integrins’ diffusion coefficient. 

Other factors such as cross-linking of receptors by QDs must also be considered as a possible 

source for the differences in the diffusion parameters measured by the two techniques. 

However, the similar diameter of the QD (16 nm) and integrin (~10 nm) as well as steric 

constraints limit the possibility of receptor cross-linking. 

 For both αPS2CβPS and αPS2CβPS-V409D integrins there are smaller mobile 

fractions measured by SPT than measured by FRAP (Table 2 and 3). This may represent a 

decrease in the mobile fraction for the subset of ligand-bound integrins compared to the 

average of all integrins in the membrane. An alternative explanation is that these changes are 

the result of the probes used in these experiments since a decrease was measured for both 

integrins. Previous comparisons of SPT and FRAP measured smaller mobile fractions by 

SPT (Saxton and Jacobson 1997; Slattery 1995). For example, Kusumi et al. reports a 30% 

E-cadherin mobile fraction by SPT and 64% by FRAP (1993). This is similar to the 

difference reported herein.  Non-specific binding of QD-RBB-Tiggrin to the cell could in 

theory artificially increase the immobile fraction measured by SPT. As discussed above, non-

specific binding was limited to 1% and this is significantly lower than the difference in the 

mobile fraction measured by the two techniques.  

 In summary, the differences reported in the diffusion coefficient for the ligand-bound 

fraction of αPS2CβPS and αPS2CβPS-V409D integrins is the results of differences in the 

diffusion characteristics of these integrins, and not the result of experimental artifacts. 
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Whereas the origin for the 31 to 51% decrease in the mobile fraction of the ligand-bound 

fraction measured by SPT compared to the FRAP remains uncertain; comparing only the 

SPT values by themselves shows that the ligand-bound fraction of αPS2CβPS-V409D 

integrins is less mobile than the wild-type integrins. 

Conclusions 

Two primary conclusions have been presented: One the ‘bulk’ integrins, representing 

the majority, measured by FRAP do not have altered diffusion properties when the high 

ligand affinity receptor is compared to the wild-type receptor. Second as measured by SPT, a 

subset of ligand-bound, high ligand affinity integrins exhibits slower diffusion than the 

ligand-bound, wild-type integrins. Information about this population of integrins is lost in the 

ensemble FRAP measurement. Additionally, SPT reveals αPS2CβPS and αPS2CβPS-V409D 

integrins exhibit both Brownian and anomalous/constrained motion, but the fraction of 

trajectories exhibiting these motions is smaller for the high ligand affinity integrins. 

αPS2CβPS integrins also have a small population with directed motion that is absent for the 

higher ligand affinity integrins. The αPS2CβPS-V409D integrins are said to exhibit 

properties that mimic signaling from outside of the cell. Integrins with other functionally 

distinct mutations may behave uniquely and represent the lateral motion for other signaling 

states. This study is the first step to addressing how ligand affinity affects the lateral 

dynamics of these receptors.  
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Table 1 Average number ± standard deviation of QD-RBB-Tiggrin per cell analyzed from 

the indicated number of cells across three replicate experiments 

S2 cells expressing: Average number 

QD per cell 

(QD-RBB-Tiggrin) 

Concentration of 

QD-RBB-Tiggrin 

(nM) 

Number of 

cells 

analyzed 

αPS2CβPS integrins 11 ± 6 1  20 

αPS2CβPS-V409D integrins 15 ± 10 0.5  16 

no αPS2CβPS integrins 0.1 ± 0.3 1  37 
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Table 2 Integrin diffusion parameters obtained from SPT experiments for wild-type integrins 

(αPS2CβPS) or high ligand affinity integrins (αPS2CβPS-V409D) 

 —————αPS2CβPS———— ————αPS2CβPS-V409D———

— 

 Diffusion 

Coefficient 

at 1 second 

×10
-9

 cm
2

/s 

α value Fraction Diffusion 

Coefficient 

at 1 second 

×10
-9

 cm
2

/s 

α value Fraction 

Immobile n/a n/a 0.60 n/a n/a 0.82 

Directed 20 1.2 0.01 n/a n/a n/a 

Brownian 6 ± 5 1.00 ± 0.03 0.08 1.3 ± 0.7 0.925 ± 0.007 0.02 

Constrained

/Anomalous 

1 ± 1 0.5 ± 0.2 0.31 0.4 ± 0.8 0.4 ± 0.3 0.16 

All Mobile 2 ± 5 

(25 cells) 

0.6 ± 0.3 0.40 0.5 ± 0.8 

(16 cells) 

0.5 ± 0.3 0.18 
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Table 3 Integrin diffusion parameters obtained from FRAP experiments for wild-type 

integrins tagged with Venus fluorescent protein (αPS2CβPS-Venus) or high ligand affinity 

integrins tagged with Venus (αPS2CβPS-V409D-Venus) 

 ————αPS2CβPS-Venus———— ——αPS2CβPS-V409D-Venus—— 

 Diffusion 

Coefficient 

at 1 second   

×10
-9

 cm
2

/s 

α value Mobile 

Fraction 

Diffusion 

Coefficient 

at 1 second 

×10
-9

 cm
2

/s 

α value Mobile 

Fraction 

 3.4 ± 0.2 

(15 cells) 

0.56 ± 0.03 0.71 ± 0.02 3.3 ± 0.1 

(16 cells) 

0.69 ± 0.02 0.67 ± 

0.01 
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Fig. 1 Fluorescence images of 5 nM QD-RBB-Tiggrin binding to S2 cells (a) expressing 

αPS2CβPS integrins, (b) expressing αPS2CβPS-V409D integrins, (c) that do not express 

αPS2CβPS integrins, and (d) expressing αPS2CβPS tagged with Venus yellow fluorescent 

protein. In (c) the white regions of interest highlight the location of cells. In (d) the white 

arrows highlight a high concentration of integrin at the periphery of the cell. Images (a), (b) 

and (c) were adjusted to same intensity range. The ten micron scale bar is the same for all 

images.  
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Fig. 2 Representative mean square displacement (MSD) versus time plots for QD-RBB-

Tiggrin bound to S2 cells expressing αPS2CβPS integrins: (a) Brownian trajectory; (b) 

anomalous/constrained trajectory; (c) immobile trajectory. The inset graphs show the 

trajectory for each type of motion with X- and Y-coordinates plotted in microns. 
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Fig. 3 All mobile trajectories (Brownian and anomalous/constrained) for: (a) αPS2CβPS or 

(b) αPS2CβPS-V409D integrins. The first number listed for each trajectory is the diffusion 

coefficient (× 10
-9

cm
2
/s) and the second number is the time exponent, α, obtained by fitting 

the log MSD vs. log τ curve for each trajectory. Some of the trajectories are overlapped, in 

most cases the overlapped trajectories were obtained from the same cell, and it is possible 

they represent the same integrin at different time point.  The inset shows a histogram of all 

diffusion coefficients for each cell line. 
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Fig. 4 Schematic of the FRAP and SPT measurements. Cells are spread on a ligand/BSA 

coated glass slide for both experiments. (a) FRAP measures the ensemble diffusion of all 

ligand bound and unbound integrins as shown by the rectangular region. (b) SPT measures 

the diffusion of only integrin that is bound to ligand-coated quantum dots as shown by the 

rectangular region. The figure is not drawn to scale.
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CHAPTER 3: SELECT CYTOPLASMIC AND MEMBRANE PROTEINS INCREASE 

THE PERCENTAGE OF IMMOBILE INTEGRINS BUT DO NOT AFFECT THE 

AVERAGE DIFFUSION COEFFICIENT OF MOBILE INTEGRINS 
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Abstract  

Integrins are ubiquitous adhesion receptors that are important for signaling and 

integrating the extracellular matrix and cytoskeleton. The role of cytoplasmic proteins 

vinculin, focal adhesion kinase (FAK), integrin linked kinase (ILK), and membrane proteins 

epidermal growth factor receptor (EGFR) and Notch in altering αPS2CβPS integrin lateral 

diffusion was measured using single particle tracking (SPT) and RNA interference (RNAi). 

SPT measures heterogeneous diffusion properties and RNAi selectively reduces the 

concentration of a target protein. After systematically reducing the concentration of vinculin, 

FAK, ILK, EGFR, or Notch there was a 31 to 80% increase in the mobile integrin fraction, 

indicating that these five targeted proteins (or assemblies that contain these proteins) are 
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responsible for immobilizing a fraction of the integrins when all proteins are present at native 

concentrations. The average diffusion coefficient of all mobile integrins did not change after 

any of the RNAi treatments, and the percentage of Brownian, directed or 

anomalous/constrained trajectories relative to total mobile trajectories did not change after 

vinculin or EGFR RNAi. However, the fraction of anomalous/constrained trajectories 

relative to the total mobile trajectories increased 9 to 19% after FAK, ILK and Notch RNAi, 

when the concentration of these proteins was reduced. In the case of FAK, ILK and Notch, 

native concentrations of these proteins simultaneously increase the immobile fraction of 

integrins but decrease the diffusion constraints to those integrins that remain mobile. 

Comparisons of single receptor and ensemble measurements of diffusion, and what is known 

about the affect of these proteins in altering integrin clustering are discussed.  

 

Introduction  

Integrins comprise a family of type 1, transmembrane receptors that integrate the 

extracellular matrix with the intracellular cytoskeleton. This family of receptors is composed 

of non-homologous, non-covalently associated α- and β- subunits, with overall highly 

conserved heterodimer structure throughout the animal kingdom [1,2]. Primary integrin 

functions include cell- extracellular matrix adhesion, cell-cell adhesion, cell migration, 

growth, signaling, differentiation, and regulation of gene expression [3-5]. Integrins are 

important pharmacological targets because diverse human pathologies including cancer, 

inflammation, fibrosis, and thrombotic diseases are associated with integrin adhesion [6,7]. A 

significant body of research focuses on the structural, biochemical, and biophysical aspects 

of integrin function [8,9]. However, little is known about the role of specific cytoplasmic and 
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membrane proteins in altering integrins’ lateral diffusion, which is a highly heterogeneous 

property. 

The cytoplasmic domain of both α- and β-integrin subunits directly or indirectly 

associate with many cytoplasmic proteins. Integrins are a component of focal adhesions, 

which are signaling and adhesion platforms that incorporate numerous cytoplasmic proteins 

[10]. Vinculin and focal adhesion kinase (FAK) are required for focal adhesion formation 

and turnover [10]. Vinculin interacts with integrins via contacts with other cytoplasmic 

proteins and has a role in regulating integrins’ residency time in focal adhesions and 

clustering [11-14]. FAK and integrin linked kinase (ILK) directly interact with integrins’ β 

cytoplasmic tail [15,16]. Due to the complexity of the cytoskeleton, and in particular the 

proteins that interact with integrins, it is desirable to unravel specific effects of each protein 

in altering integrin lateral diffusion.  

Similarly, a diverse group of membrane proteins form supramolecular complexes that 

contain integrins [17]. Co-immunoprecipitation assays have provided direct evidence of 

integrins’ physical association with receptor tyrosine kinases [18-20]. For example, α5β1, 

α2β1, α6β1, and α6β4 integrins are known to associate with EGFR [21-25]. β1 integrins also 

interact with another cell surface receptor termed Notch [26]. The coupling and signaling 

pathways between β1 integrins, Notch, and EGFR are coordinated by lipid nanodomains 

termed caveolae [26]. Since integrins are known to associate and cooperate with EGFR and 

Notch in regulating cellular functions, it is necessary to address how these membrane 

receptors play a role in altering integrins’ lateral diffusion.  

Fluorescence recovery after photobleaching (FRAP), fluorescence correlation 

spectroscopy (FCS), and single particle tracking (SPT) are the main microscopy techniques 
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utilized to measure the lateral diffusion of membrane components [27,28]. We have used 

FRAP to elucidate the role of select cytoplasmic and membrane proteins in altering the 

ensemble diffusion properties of integrins [29,30]. Since FRAP is an ensemble technique that 

provides an average response from numerous receptors, the heterogeneity in integrin 

diffusion is not quantified. In contrast, SPT measures the mobility of an individual receptor, 

and enables the classification of each mobile receptor as exhibiting directed, Brownian, or 

anomalous/constrained motion. In addition, the dilute nature of the particles used in SPT 

provides an approximately two orders of magnitude better spatial resolution than that of 

FRAP, which enables the quantification of lateral mobility within domains smaller than the 

diffraction limit of light [31].  Several studies propose the existence of lipid nanodomains 

(e.g., caveolae, clathrin-coated pits) and cytoskeletal corrals that constrain receptor diffusion 

in the membrane [32-35]. SPT’s superior spatial resolution can detect changes in integrins’ 

mobility within these nanodomains. 

Herein, the changes in integrins’ lateral diffusion after systematically reducing the 

expression of the cytoplasmic proteins (vinculin, FAK, or ILK) and the membrane proteins 

(EGFR or Notch) are reported. The targeted proteins in this study were chosen based on their 

known interaction with integrins, their effect on integrins’ lateral diffusion as measured with 

FRAP or due to a known effect on integrin clustering [30,29,36]. RNA interference (RNAi) 

was used to decrease the expression of the targeted cytoplasmic or membrane protein 

followed by characterization of integrin diffusion using SPT. Real-time polymerase chain 

reaction (RT-PCR) was used to quantify reductions in the target protein’s mRNA 

concentration after RNAi treatment. The results help to unravel the role of other cellular 

components in altering heterogeneous populations of laterally diffusing integrins.  
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Materials and Methods 

 Cell culture and preparation. Drosophila S2 cells transformed to express αPS2CβPS 

integrins under the regulation of the heat shock protein 70 promoter were used to perform all 

experiments unless otherwise noted. The details of transfection methods and culture 

techniques have been previously described [37-39]. Untransformed S2 cells were maintained 

as previously described [40,30,29]. 

 dsRNA synthesis and RNA interference. Double stranded RNA (dsRNA) synthesis 

and RNAi treatments have been previously described [41,36,30,29]. Cells were incubated 

with 10 µg dsRNA for 4 days at 22 
o
C to reduce the expression of targeted proteins before 

performing RT-PCR or SPT experiments. For SPT experiments, αPS2CβPS integrin 

expression in cells were induced on the fourth day of dsRNA incubation with a 36 
o
C heat 

shock followed by a 3 h incubation at 22 
o
C. Cells were then centrifuged at 600×g for 3 min 

and the cell pellet was resuspended to a final concentration of 4×10
5
 cells/mL in serum free 

medium. Cells were placed on RBB-Tiggrin-coated microscope slides and allowed to spread 

for 45 min before starting SPT experiments [42]. RBB-Tiggrin is a fragment of the protein 

Tiggrin, which is the natural ligand to αPS2CβPS integrins. 

 Real-Time Polymerase Chain Reaction (RT-PCR). Extraction of mRNA from the 

RNAi treated and no RNAi treated cell lysates was performed using the Dynabeads mRNA 

Direct kit (Invitrogen 610.12). After the quantification of mRNA using the absorbance value 

at 260 nm, a High Capacity RNA-to-cDNA kit (Applied Biosystems # 4387406) was used 

for the reverse transcription of mRNA to cDNA. Applied Biosystems TaqMan Gene 

Expression Assays and master mix were combined with 50 ng of cDNA and the RT-PCR 
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experiment was performed on a Roche LightCycler 480 (Roche Applied Science). The gene 

expression assays were EGFR: Dm01841622_g1; Notch: Dm01841974_g1; Vinculin: 

Dm01841855_g1; FAK: Dm01816810_m1; ILK: Dm01843539_g1; Myospheroid: 

Dm01843062_g1; PMCA: Dm01820605_g1; and gamma tubulin Dm01841764. Genomic S2 

DNA isolated with Qiagen Kit # 69504 was used to construct the calibration curve and to 

calculate the reaction efficiency. The statistical significance and the relative expression level 

were quantified using the software REST 2009 (Qiagen, Hilden, Germany). 

 Quantum Dot (QD) preparation and incubation with cells. The preparation of RBB-

Tiggrin-coated, 16-nm, amine-derivatized polyethylene glycol QDs (QD-RBB-Tiggrin) with 

emission maxima at 605 nm was performed as previously described [40]. Just prior to use, 

the QD-RBB-Tiggrin solution was sonicated for 2 h before diluting with a 1 % bovine serum 

albumin (BSA) solution to the required 0.1 nM concentration. Then the diluted QD-RBB-

Tiggrin solution was gently shaken for half an hour followed by a 5 min sonication prior to 

incubation with 50 µL of cells for 5 min. The cells were then washed three times and imaged 

with BES Tyrodes buffer (20 mM BES, 0.14 M NaCl, 2.9 mM KCl, 0.1 % w/v glucose, 0.1 

% w/v BSA). 

 QD tracking Instrumentation. The QDs were imaged using a Nikon Eclipse TE2000U 

microscope (Melville, NY, USA) operating in wide-field, epi-fluorescence mode with 100× 

Plan Apo, 1.49 numerical aperture oil-immersion objective. Fluorescence images for each 

SPT experiment were recorded for 30 s with continuous 40 ms acquisition using a 16-bit 

PhotonMax 512 EMCCD camera (Princeton Instrument, Trenton, NJ, USA) and mercury 

lamp illumination. Excitation of (425/45 nm) and emission from (605/20 nm) the QDs were 
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obtained through a filter set from Omega Optical (XF304-1, Brattleboro, VT, USA). All 

tracking experiments were performed at room temperature.  

 QD localization, tracking, and binding specificity. The Image J particle tracker 

2D/3D plug-in implementing the algorithm developed by Sbalzarini and Koumoutsakos was 

used for QD localization, tracking, and to check binding specificity [43]. The particle radius 

was three, the cutoff value was zero, and the intensity percentile range was 0.1-1.5. A 

displacement value of four pixels was chosen based on the maximum step calculation for the 

fastest diffusion that can be theoretically attained on the membrane at the time resolution of 

single frame used in this experiment [44-46]. A single QD track was visually identified by 

using its blinking property and the short blinking events were accounted for in the trajectory 

by choosing the link range parameter of four [47,48]. The extracted trajectories were at least 

4 s in duration. The positional accuracy was estimated to be ca.17 nm in a 2D plane as 

measured by imaging and analyzing stationary QDs. To verify the specific binding of 0.1 nM 

QD-RBB-Tiggrin with αPS2CβPS integrins, the number of bound QDs was quantified using 

a cell line expressing αPS2CβPS integrins or a second cell line that did not express integrins 

as discussed previously [40]. 

 Data analysis. The mean square displacement (MSD) for each trajectory at different 

time lags was calculated using the formula:  

 

 , (1) 

where τ is the acquisition time between two successive frames, N is the total number of 

frames in the sequence, x and y are coordinates of the particle at a specific time lag, 0 < n < 

N/4 and 1 < i < (N-n) [49,28]. The diffusion coefficient for each trajectory was analyzed with 
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a time-dependent diffusion coefficient (D) as described by Feder et al. [50], which is given 

by: 

 

)(
4

1 1 D , (2) 

where Γ is the transport coefficient, τ is the time lag, and α is the time exponent. The 

logarithmic plot of MSD versus the time lag was fitted by linear regression with weighting to 

the standard deviation to calculate Γ (intercept) and α (slope) [50,51,28]. The mode of 

diffusion/motion was assigned to each trajectory based on the α value: directed (α > 1.1), 

Brownian (0.9 ≤ α ≤ 1.1), anomalous/constrained (0.1 ≤ α < 0.9), and immobile (α < 0.1) 

[52,50]. The time-dependent diffusion coefficient was calculated at 1 s using equation 2 for 

all trajectories with α > 0.1. 

 

Results and Discussion 

 Reduction in mRNA concentration for RNAi targeted proteins. The main goal of this 

study was to understand the influence of cytoplasmic (vinculin, FAK, or ILK) and membrane 

(EGFR or Notch) proteins on αPS2CβPS integrins’ lateral diffusion using SPT to reveal 

heterogeneous populations (Fig. 1). The proteins selected for this study were chosen because 

they are known to affect the ensemble diffusion properties or clustering of integrins, but 

RNAi treatments for these proteins do not affect cell growth, viability or cell cycle regulation 

[53-55,36,30,29]. Details of how these proteins affect integrin diffusion still remain, and 

many of these details can be elucidated by studying individual populations of integrins, rather 

than an ensembled response. In this study, αPS2CβPS integrins’ lateral diffusion was 

characterized into different modes of motion at native cytoplasmic and membrane protein 
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concentrations. Then, integrin diffusion was measured in a cell population with a reduced 

concentration of one target protein. To minimize the non-specific reduction of proteins other 

than the target, RNAi probes were chosen to have no calculated nonspecific targets [56,36]. 

The reduced mRNA expression for the RNAi targeted protein was confirmed by RT-

PCR (Table 1). There was an 18 to 92% statistically significant reduction in mRNA 

concentration, with the targeted cytoplasmic proteins’ mRNA reduced to a greater extent 

than the membrane proteins. This may be due to the differences in how mRNA is synthesized 

and processed for cytoplasmic versus membrane proteins [57,58]. Immunocytochemistry 

showed that a 62% or 78% decrease in mRNA concentration correlated to a corresponding 

35% or 21% decrease in membrane protein expression for EGFR or Notch, respectively [29]. 

Similarly, for the cytoplasmic protein vinculin, an 84% decrease in mRNA concentration 

corresponded to a 36% decrease in protein expression [30,59]. Antibodies do not exist for the 

other targeted proteins and the S2 cell line.  

 

Table 1: RT-PCR results of the relative expression of mRNA in RNAi treated cells 

compared to untreated cells.  

 
Treatment mRNA RNAi 

mRNA no RNAi 

Cytoplasmic 

Proteins 

Vinculin 0.08 (p < 0.01)* 

FAK 0.1 (p < 0.01)* 

ILK 0.08 (p < 0.01)* 

Membrane 

Proteins 
EGFR 0.6 (p < 0.01)* 

Notch 0.8 (p < 0.01)* 
* A p value below 0.05 indicates a statistically significant difference in the mRNA 

expression when compared to the value before RNAi treatment at the 95% confidence level.  
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 αPS2CβPS integrin diffusion at native protein concentrations. A total of 100 

αPS2CβPS integrin trajectories were analyzed from 13 different cells at native membrane 

and cytoplasmic protein concentrations. Trajectories were classified as exhibiting directed, 

Brownian, anomalous/constrained, or immobile properties (Fig. 2). As expected, the directed 

and Brownian trajectories generally covered a larger area of the cell membrane than the 

anomalous/constrained integrins, and any “movement” observed in the immobile trajectories 

was within the positional uncertainty for these experiments. At native cytoplasmic and 

membrane protein concentrations there are 58% immobile and 42% mobile ligand-bound 

integrin (Fig. 3a). As a percentage of mobile integrins, there are 7%, 17%, and 76% directed, 

Brownian, and anomalous/constrained ligand-bound integrin, respectively. A majority of 

constrained/anomalously diffusing integrins measured by SPT is consistent with published 

ensemble FRAP measurements; the directed and Brownian diffusing populations are not 

measured by FRAP [30,29]. 

 In SPT measurements, the specific binding of QDs to integrin is essential for the 

accuracy of the measurement. Therefore, the binding specificity of QD-RBB-Tiggrin to 

integrin at the concentration used for the SPT experiments was tested using 2 cell populations 

that: (i) expressed αPS2CβPS integrins or (ii) did not express integrins. An average of 10 and 

0.1 QDs per cell was measured for the cells expressing integrins or not expressing integrins, 

respectively (Table 2). Nonspecific binding is 1%, suggesting minimal impact of this small 

fraction on the SPT results. In general, the nonspecific binding resulted in immobile 

trajectories; therefore nonspecific binding is expected to increase the immobile fraction by 

1% at most. 
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Table 2: Average number of QDs bound per cell using 0.1 nM QD-RBB-Tiggrin. 

S2 cells 

expressing 
Average number of 

QD-RBB-Tiggrin per 

cell 
No. Of cells 

analyzed 

αPS2CβPS 
integrins 10 12 

No integrins 0.1 36 

 

 

 The range of diffusion coefficients for mobile, ligand-bound integrins spans three 

orders of magnitude (0.002 to 5 × 10
-9

 cm
2
/s) at native protein concentrations, indicating a 

high level of heterogeneity in integrin diffusion within the mobile population (Fig. 3b). The 

large heterogeneity in integrins’ lateral diffusion is postulated to be the result of varying 

interactions with other membrane and cytoplasmic components. The average diffusion 

coefficient from all mobile SPT tracks was 0.7 ± 1 × 10
-9

 cm
2
/s.  

 Reduced expression of cytoplasmic proteins vinculin, FAK, or ILK increases the 

ligand-bound integrin mobile population. A total of one-hundred αPS2CβPS integrin 

trajectories were collected and analyzed for each RNAi targeted cytoplasmic protein, and the 

results were compared to values obtained at native protein concentrations (i.e., prior to 

RNAi). After vinculin, FAK, or ILK RNAi, the mobile population increased by 50%, 80%, 

and 31%, respectively (Fig. 3a). The mobile fraction is larger after these RNAi treatments as 

measured by SPT compared to previously reported values measured by FRAP [30]. The 

previous FRAP experiments used integrin that was covalently attached to a fluorescent 

protein. In the FRAP experiments, the integrin did not need to be bound to ligand to 
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contribute to the signal. On the other hand, the SPT experiment only measures the trajectory 

of integrin that is bound to ligand (i.e., QD-RBB-Tiggrin). The difference in the mobile 

fraction measure by SPT and FRAP after these RNAi treatments suggests that vinculin, FAK 

and ILK have a greater impact on immobilizing ligand-bound integrin, which is the 

population measured by SPT, compared to integrin that is not ligand-bound, which will also 

contribute to the FRAP signal. 

For vinculin RNAi treated cells there is an increase in the number of integrins 

exhibiting all modes of motion (directed, Brownian, and anomalous), but the fraction of each 

population relative to the total number of mobile trajectories is approximately the same as 

measured for the no RNAi cell population (Fig. 3a). This indicates vinculin does affect the 

number of integrins that are mobile, but it does not affect the mode of integrin diffusion. In 

contrast, FAK and ILK do affect the mode of integrin diffusion. There is a 19% (FAK RNAi) 

or 13% (ILK RNAi) increase in the anomalous/constrained population and a concurrent 

decrease in directed and Brownian populations. This indicates FAK and ILK expressed at 

native concentrations have a role in decreasing mobile integrins’ diffusion constraints. 

There is no statistically significant change in the average integrin diffusion coefficient 

after the RNAi treatment for vinculin (1 ± 3 × 10
-9

 cm
2
/s), FAK (0.3 ± 0.7 × 10

-9
  cm

2
/s), or 

ILK (0.5 ± 1 × 10
-9

 cm
2
/s) measured by SPT (this work) or as previously reported using 

FRAP [30]. However, histograms of diffusion coefficients provide additional information 

that the average values do not provide (Fig. 3b). Considering frequency changes of greater 

than 0.05, there are several significant changes. In the case of reduced FAK and ILK 

concentrations, the histograms show an increased frequency of integrins within the range 

0.001 to 0.1 × 10
-9

 cm
2
/s (FAK) or 0.001 to 0.01 × 10

-9
 cm

2
/s (ILK, Fig. 3b). The increased 
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frequency of mobile integrins with slow diffusion coefficients is not evident in the average 

and ensemble diffusion coefficients due to the large standard deviation and heterogeneity, 

revealing the importance of single receptor measurements to reveal changes to individual 

populations.  In the case of vinculin RNAi, there is a significant increase in the frequency of 

two populations, one diffusing faster than the average and the other diffusing slower than the 

average (Fig. 3b), essentially canceling each other out in the average. 

It is well established that integrins provide a physical link between the extracellular 

matrix, actin cytoskeleton, and intracellular adaptor molecules at adhesion sites. The increase 

in integrins’ mobile population after reducing vinculin, ILK or FAK concentrations is 

expected to be the result of alteration in extracellular matrix-integrin-cytoskeleton 

connections. Using the wealth of information known about vinculin as an example, it has 

been observed that focal adhesions are smaller and fewer in mouse embryo fibroblast cells 

devoid of vinculin, and the cells have reduced adhesion to a variety of extracellular matrix 

proteins [60,61]. Also, more dynamic focal adhesions in mouse embryo fibroblasts have been 

observed when the vinculin concentration was reduced [60,61]. Hence, because of these 

changes to focal adhesions, the decrease in vinculin concentration might favor an increase in 

the mobile integrin population by releasing binding constraints to immobile cytoplasmic 

assemblies.  

 The ligand-bound mobile population of integrins increases with reduced expression 

of membrane proteins EGFR or Notch. SPT results showed a 76% and 62% increase in the 

mobile population of integrins after EGFR or Notch protein reduction, respectively (Fig. 4a). 

Within reasonable experimental uncertainty, these are the same mobile fractions measured by 

FRAP after the reduction of these proteins [29]. In the case of EGFR RNAi, the fraction of 
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integrins exhibiting each mode of motion relative to the total number of mobile integrins was 

the same as measured before RNAi treatment; whereas anomalous/constrained integrin 

trajectories are the only mode of motion exhibiting an increased number of trajectories after 

Notch RNAi. In this regard, native concentrations of Notch, FAK and ILK generate a similar 

effect on integrin diffusion, which is less mobile integrins and decreased constrained 

diffusion on the remaining mobile population.  

 Statistically similar average integrin diffusion coefficients were measured after the 

RNAi treatment of EGFR (0.5 ± 1 × 10
-9

 cm
2
/s) or Notch (0.6 ± 1 × 10

-9
 cm

2
/s) compared to 

the average value before RNAi treatment (0.7 ± 1 × 10
-9

 cm
2
/s). After RNAi treatment there 

is an increase in the mobile integrin fraction with diffusion coefficients that spanned 0.001 to 

1 x 10
-9

 cm
2
/s; only the fastest diffusion coefficients exhibit no change (Fig. 4b). 

Some plausible reasons for the increase in the mobile population of integrins after 

EGFR or Notch RNAi are decreases in integrin clustering, altered integrin organization 

within nanodomains or altered interactions with cytoplasmic proteins driven by the altered 

membrane composition, reduced membrane crowding or changes in ligand binding affinity. 

Using fluorescence resonance energy transfer less integrin clustering was measured at a 

reduced concentration of EGFR or Notch [29]. Reduced clustering as a result of the EGFR or 

Notch RNAi treatment is not the best explanation for the increase in the mobile fraction of 

integrins since more integrin clustering was measured after vinculin and FAK RNAi [36], 

and as reported above there was also an increase in the integrin mobile fraction after these 

treatments. Integrins are known to partition between lipid nanodomains and the bulk 

membrane in response to a variety of stimuli such as ligand binding [62,63]. Similarly, it has 

been reported that the lipid nanodomains can change their size and composition either by 
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including or by excluding proteins selectively in response to intra- or extracellular stimuli 

[64]. Another recent study described how adaptor proteins such as vinculin and FAK are 

enriched in certain lipid raft fractions [65]. Therefore, the reduced concentration of adapter 

proteins, EGFR or Notch could disrupt the composition or organization of lipid nanodomains 

or perturb the partitioning of integrins between nanodomains and the bulk membrane in a 

way that favors integrin mobility. This would explain the consistent increase in the integrin 

mobile fraction after all five RNAi treatments. The increase in the number of integrins with 

constrained diffusion after Notch, FAK and ILK RNAi treatments versus the consistent 

fraction of integrins with constrained diffusion before and after EGFR and vinculin RNAi 

treatment could suggest a different mechanism of disrupting the lipid nanodomain structure 

or composition.  

 

Conclusions 

A combination of SPT and RNAi was used to show that the reduction of select 

cytoplasmic (vinculin, FAK, or ILK) and membrane (EGFR or Notch) proteins play a role in 

affecting integrins’ lateral mobility. Overall, after RNAi treatment, the fraction of ligand-

bound integrins became more mobile and in some cases diffusion also became more 

constrained. The modification in extracellular matrix-integrin-cytoskeleton connections, and 

subsequent changes brought about as a consequence of this, are the hypothesized mechanism 

for the increase in integrin mobility after reduction of select cytoplasmic or membrane 

protein concentrations. The methodology reported here is suited to study the role of other 

cellular proteins in affecting the diffusion of numerous membrane proteins. 
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Fig. 1 Schematic of the experimental approach. First, the integrins’ lateral diffusion 

characteristics are measured at native cytoplasmic and membrane protein concentrations 

using SPT with ligand-labeled quantum dots. Second, the cells were RNAi treated to reduce 

the select cytoplasmic or membrane protein concentration. Third, the integrins’ lateral 

diffusion characteristics at the reduced cytoplasmic or membrane protein concentration are 

measured. The figure is not drawn to scale. 
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Fig. 2 Representative trajectories exhibited by αPS2CβPS integrins bound to QD-RBB-

Tiggrin. (Left to right) Directed (α = 1.11), Brownian (α = 1.04), anomalous/constrained (α = 

0.68), and immobile (α = 0.05) trajectory. 
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Fig. 3 Cytoplasmic Protein RNAi. a The total number of immobile and mobile trajectories 

exhibiting each mode of motion observed from 100 trajectories. For directed, Brownian and 

anomalous/constrained trajectories, the first number in the table is the percentage relative to 

all 100 trajectories and the second number is the percentage relative to only mobile 

trajectories. b histograms of diffusion coefficients for trajectories classified as mobile after 

vinculin, FAK, or ILK RNAi treatment. 
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Fig. 4 Membrane Protein RNAi. a The total number of immobile and mobile trajectories 

exhibiting each mode of motion observed from 100 trajectories. For directed, Brownian and 

anomalous/constrained trajectories, the first number in the table is the percentage relative to 

all trajectories and the second number is the percentage relative to only mobile trajectories. b 

histograms of diffusion coefficients for trajectories classified as mobile after EGFR or Notch 

RNAi treatment. 
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CHAPTER 4: ROLE OF INSULIN RECEPTOR AND INSULIN SIGNALING ON 

αPS2CβPS INTEGRINS’ LATERAL DIFFUSION 

 

Dipak Mainali, Aleem Syed, Neha Arora, Emily A. Smith 

 

Abstract 

Integrins are ubiquitous transmembrane receptors with adhesion and signaling 

properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins’ 

lateral diffusion was studied using single particle tracking (SPT) in S2 cells before and after 

reducing the insulin receptor expression or insulin stimulation. The expression of the insulin 

receptor was reduced using RNA interference. Insulin signaling was monitored by measuring 

the level of phospho-Akt by Western blotting.  There was a 38% increase in the mobile 

population of integrins after reducing the concentration of the insulin receptor, and a 6% 

increase when the concentration of the insulin receptor was reduced in combination with 

insulin stimulation. After both treatments there was also a 6 to 13% increase in trajectories 

exhibiting Brownian diffusion relative to the total mobile population, indicating there were 

relatively fewer integrins in confined domains. For integrins that remained in confined 

domains after reducing the concentration of insulin receptor there was a 49% increase in the 

average diameter of confined domains and a 29% increase in the time integrins spend in 

confined domains. No change in integrins’ diffusion coefficient was measured for any 

conditions included in this study. Insulin stimulation alone has no measured effect on altering 

integrin diffusion, but reduced expression of the insulin receptor alters integrin diffusion 

properties. The addition of insulin stimulation under conditions of reduced insulin receptor 
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expression partially restores changes to integrin diffusion properties, possibly as a result of 

other insulin signaling pathways that are activated at reduced insulin receptor conditions.  

 

 

Keywords cell membrane biophysics, single particle tracking, RNA interference (RNAi), S2 

cells, quantum dots 

 

Abbreviations 

SPT  Single particle Tracking 

QDs  Quantum dots 

RT-PCR Real-time polymerase chain reaction 

RNAi  RNA interference 

RTKs  Receptor Tyrosine Kinases 

 

 

Introduction 
 

Integrins are adhesion and bi-directional signaling receptors [1,2]. The association of 

extracellular ligands or cytoplasmic proteins with integrins initiate events such as 

cytoskeleton reorganization, regulation of gene expression, activation of mitogen-activated 

protein kinase, and phosphorylation of focal adhesion kinase and paxillin [3-9]. Binding to 

extracellular ligand or intracellular components is not the only mechanism to activate 

integrins’ signaling pathways. Signaling is a complex phenomenon and cross-talk can exist 

between different receptors’ signaling processes [10].  



www.manaraa.com

78 

 

 

Integrins and receptor tyrosine kinases (RTKs) are two families of cell surface 

receptors whose signaling processes are known to cooperate for an integrated control of 

cellular function. Cross-talk between integrins and RTKs can be through signaling pathways 

without direct interaction or through direct physical association [5,11-13]. For example, 

certain growth factors modulate integrin-mediated cell adhesion to the extracellular matrix, 

and adhesion to extracellular matrix is one of the prerequisites for cells to respond to growth 

factors [14-18]. Similarly, integrin-dependent cell migration is induced by growth factors 

[19].  

A member of the RTK family that exhibits cross-talk with integrins is insulin 

receptors. Both insulin-triggered signaling and direct physical association modulate this 

cross-talk [4,13,20,21]. For example, insulin treatment on CHO-T cells has increased the 

adhesion of cells to a fibronectin matrix mediated by α5β1 integrins [20]. Similarly, α5β1 

signaling enhances insulin receptor kinase activity and formation of complexes containing 

insulin receptor substrate-1(IRS-1) and PI-3 kinase [20]. αvβ3 integrins co-immunoprecipitate 

with activated insulin receptor indicating a direct association [13]. Also, αvβ3 association 

with IRS-1 and insulin receptor was enhanced in response to insulin stimulation [21,13]. 

During insulin mediated signaling, insulin receptor and downstream targets interact with 

cholesterol containing domains [22-24]. Upon insulin stimulation, single particle tracking 

experiments on insulin receptor showed reduced lateral diffusion and increased confinement 

within 100-nm scale membrane domains [25].    

Integrins’ lateral mobility and rearrangement in the cell membrane are essential to 

initiate many cellular functions. Integrin clustering can lead to increased adhesion and signal 

activation while diffusion affects the rate at which integrins interact with other cellular 
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components [26,27]. Integrin-mediated adhesion, migration, and association with other 

membrane receptors depend on its lateral diffusion. Monitoring the lateral mobility of 

integrins in the cell membrane in response to insulin receptor signal stimulation or insulin 

receptor depletion can provide valuable insight into the mechanism of cross-talk between 

these receptors.  

Herein, the role of insulin signaling and the insulin receptor on integrins’ lateral 

dynamics as measured by SPT is reported. SPT is a method for measuring heterogeneous 

properties of receptor diffusion with high spatial resolution [28]. Drosophila S2 cells 

expressing αPS2CβPS integrins are stimulated with insulin or the insulin receptors are 

targeted by RNA interference. The basic mechanisms of insulin signaling are conserved in 

Drosophila and mammalian systems [29,30]. Western blot analysis to measure phospho-Akt 

expression can verify successful insulin stimulation. Akt, also called protein kinase B (PKB), 

is activated by insulin in a signaling pathway involving PI3 kinase [31,32]. Real-time 

polymerase chain reaction (RT-PCR) quantifies insulin receptor’s mRNA concentration. This 

research provides new insight on how insulin signaling and the insulin receptor affect 

integrins’ lateral dynamics and adds new evidence to the mechanism of cross-talk between 

these receptors.  

 

Materials and Methods 

Cell culture   

Drosophila S2 cells were used to perform all experiments. Cells were transformed to 

express αPS2CβPS integrins under the regulation of the heat shock promoter, unless 

otherwise noted. Transfection methods and culture techniques have been previously 

described [33-36].  
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RNA interference and RT-PCR 

For RNA interference, cells were incubated with 10 µg of double-stranded RNA 

(dsRNA) specific to the insulin receptor (RNAi reagent identifier: HFA16717, 

http://www.genomernai.org/) for 4 days at 22 
o
C before performing RT-PCR or SPT 

experiments. dsRNA synthesis and RT-PCR experiments were performed as described 

previously [37-41]. Applied Biosystems TaqMan Gene Expression Assay (Dm02136224_g1) 

for insulin receptor (INR) was obtained from Life Technologies (Carlsbad, CA, USA). 

Insulin stimulation and Western Blot analysis 

Insulin stimulation was achieved with the treatment of 10 µg/mL human insulin 

(Sigma Aldrich, Saint Louis, MO) for 5 minute [30]. To measure phospho-Akt levels by 

Western blot analysis, cells were lysed using SDS sample buffer (62.5 mM Tris-HCl pH 6.5 

at RT, 2 % (w/v) SDS, 10 % glycerol, 41.6 mM DTT), followed by sonication for 2 min to 

complete lysis. The lysed samples were then heated for 5 min at 95 
o
C and cooled on ice 

before loading to 4-12 % gradient SDS-PAGE gel. The separated proteins from SDS-PAGE 

were transferred to polyvinylidene fluoride (PVDF) membrane. The membrane blots were 

washed for 5 min with TBS (20 mM Tris-HCl, 500 mM NaCl, pH 7.5) and blocked in TBST 

(TBS, 0.1 % Tween 20) with 5 % w/v nonfat dry milk for 1 h. The blots were then washed 

with TBST three times at 5 min intervals and incubated overnight at 4 
o
C with phospho-Akt 

(Ser473) Rabbit mAb (Cell Signaling Technology # 4060, Beverly, MA, USA) at a dilution 

of 1:2000. After washing three times with TBST, the blots were then incubated with Anti-

Rabbit IgG, HRP-linked antibody (Cell Signaling Technology # 7074, Beverly, MA, USA) at 

a dilution of 1:1000 for 1 h at room temperature. Finally, after washing the membrane three 
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times for 5 min each with TBST, the blots were developed using Clarity Western ECL 

Substrate ( Bio-Rad, # 170-5060, Hercules, CA, USA).  

Quantum dot preparation and imaging 

The 16-nm amine-derivatized polyethylene glycol quantum dots  (Life Technologies, 

Carlsbad, CA) were conjugated with a recombinant version of the αPS2CβPS integrins' 

ligand RBB-Tiggrin [33,37]. The conjugated product (here after QD-RBB-Tiggrin) was 

sonicated for 2 h and diluted to 1 nM before incubating for 5 min with cells to bind with 

integrins [37]. The QD imaging experiments were performed at room temperature using a 

Nikon Eclipse TE2000U microscope (Melville, NY, USA) operating in wide-field, epi-

fluorescence mode with a 100× objective and mercury lamp illumination [33,37].  

Fluorescence images were collected every 40 ms for a total of 30 s using a PhotonMAX 512 

EMCCD camera (Princeton Instrument, Trenton, NJ, USA).  Filter sets for excitation (425/45 

nm) and emission (605/20 nm) were obtained from Omega Optical (XF304-1, Brattleboro, 

VT, USA).  

QD-RBB-Tiggrin binding specificity, localization, and tracking 

The ImageJ particle tracker 2D/3D plug-in implementing the algorithm developed by 

Sbalzarini and Koumoutsakos was used for quantifying QD-RBB-Tiggrin binding specificity, 

localization, and tracking [42,37]. A single QD-RBB-Tiggrin was visually identified by its 

blinking property and the extracted trajectories were at least 4 s in duration. S2 cells 

expressing αPS2CβPS integrins or not expressing αPS2CβPS integrins were used to verify 

the specific binding of 1 nM QD-RBB-Tiggrin. Specific binding was ~99 %. 
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SPT data analysis 

 

SPT trajectories were analyzed using APM_GUI (Analyzing Particle Movement with 

Graphical User Interface), which is a MatLab-implemented application based on an 

algorithm reported by Simpson and co-workers [43-45]. Trajectories were classified as 

exhibiting either confined or non-confined (Brownian) motion based on how long the particle 

stays in a given region. The confinement index (L) was calculated for each trajectory to 

highlight regions of confined behavior as described previously [44]. The larger the value of 

L, the greater the probability a trajectory is in a confined domain. The confinement index (L) 

and critical time tc were the two parameters used to classify modes of motion. For a given 

trajectory, a confined domain is defined by the regions where L increases above a critical 

threshold Lc for a duration of time longer than a critical time tc. Based on the simulation of 

Brownian trajectories, those with L > 3.16 for a duration tc > 1.1 s have a 99.93% likelihood 

to be in a confined domain. The size of the confined region, the duration of the confinement, 

and the diffusion coefficients inside the confined zones and outside the confined regions 

were further analyzed for each trajectory classified as confined. The characteristic diffusion 

coefficient of a given region and the instantaneous diffusion coefficient for each segment of a 

trajectory were calculated by analyzing the plot of mean square displacement (MSD) vs. time 

[43].  

 

Results and Discussions 

 

Insulin treatment has no significant effect on integrins' lateral dynamics 

 

The goal of this study was to understand how insulin-mediated signaling and more 

generally the insulin receptor affect integrins’ lateral dynamics. The first step is to measure 
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integrins' diffusion properties at native cellular conditions. SPT was used to measure a total 

of 100 trajectories, which were classified as exhibiting non-confined/Brownian diffusion, 

confined diffusion, or immobility. Integrins were considered to be immobile if the diffusion 

coefficient was below 0.001 µm
2
/sec. At native cellular conditions, there were 62% ligand-

bound mobile trajectories; 39 trajectories showed confined diffusion and 23 trajectories 

displayed Brownian diffusion (Fig.1). Confined trajectories consisted of at least one or up to 

six confined regions whereas Brownian trajectories have no confined regions (Fig.2). As one 

may expect, the average diffusion coefficient inside the confined region (0.01 µm
2
/sec) was 

an order of magnitude slower compared to the average diffusion coefficient outside the 

confined regions (0.1 µm
2
/sec). The average diameter and the duration within the confined 

region were 110 nm and 2.1 s, respectively.  The presence of confined and immobile 

integrins is assumed to be the result of interactions with other biomolecules and possibly with 

large biocomplexes.  

Insulin-mediated signaling was activated by treating cells with 10 µg/mL insulin, and 

verified by measuring phospho-Akt levels. Cells treated with insulin showed a non-integrin 

dependent 40% increase in phospho-Akt (Fig. 3). Based on the analysis of 100 trajectories 

after insulin stimulation, 65% of integrins were mobile and 35% were immobile.  The 

integrin mobility before and after insulin stimulation was similar (Fig. 1).  Additionally, there 

is no statistically significant difference in the integrin diffusion coefficient, confinement 

domain size, or the duration in confined domains when compared to cells that are not 

stimulated with insulin (Table 1, Fig. 4). These results indicate that a downstream activation 

of insulin-signaling, as measured by phospho-Akt level, doesn’t have a measurable impact on 

integrins’ lateral diffusion. 
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Insulin receptors constrain integrin diffusion in a native cellular environment 

 

Insulin receptor expression was reduced by performing RNA interference. The 

decreased expression of insulin receptor mRNA was confirmed by RT-PCR, which revealed 

a 72% statistically significant reduction after RNAi treatment. Compared to cells with a 

native expression of insulin receptor, cells that were RNAi treated for insulin receptor 

showed an elevated phospho-Akt activity in the absence of insulin stimulation (Fig. 3). A 

similar observation has been made when insulin receptor expression was depleted in renal 

mesangial cells [46].  In insulin receptor RNAi treated cells, the intensity of the phospho-Akt 

band after insulin stimulation was 20% higher when compared to the phospho-Akt band 

observed without insulin stimulation. This may be the result of less than 100% reduction in 

the insulin receptor expression after RNAi, or the result of signaling pathways that don't 

involve the insulin receptor. Actin, which was detected as a loading control, had similar 

intensity in cells with and without insulin simulation (Fig. 3).  

After reducing the expression of insulin receptors, a total of 100 ligand-bound 

integrin trajectories were collected and analyzed, and the results were compared to values 

obtained at a native cellular environment. The ligand-bound integrin mobile population 

increased to 86%; and there was an increase in the number of both Brownian and confined 

populations of integrins (Fig. 1). Relative to the total number of mobile integrin trajectories, 

there is a larger increase in trajectories exhibiting Brownian diffusion relative to those with 

confined domains.  Based on the Welch’s t-test, there is a statistically significant increase in 

the average diameter of confinement domains and the average duration that mobile integrins 

reside inside confined domains when values after insulin receptor RNAi are compared to a 

native cellular environment (Table 1 and Fig. 4).  The average diameter of the confinement 
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domain increases to 160 nm from 110 nm and the average duration of time inside the 

confined domains increases to 2.7 s from 2.1 s. There is no statistically significant difference 

in the integrin diffusion coefficients inside or outside the confined regions (Table 1). The 

increase in the amount of time integrins spend in confined domains may be correlated with 

the increase in the diameter of the confined domains; however, based only on considerations 

of area one would expect the duration in confined domains to quadruple. As this does not 

happen, other factors must be controlling the amount of time integrins reside in confined 

domains. 

The increase in integrins' mobile population and the relative (based on only the 

mobile trajectories) decrease in the percentage of integrins with confined motion with 

reduced insulin receptor expression may be due to the release of physical interactions 

between these two receptors. The physical association of integrins with insulin receptor has 

been reported [13,21]. Reduced membrane crowding may also play a role, although this is 

unlikely to be the sole explanation for the changes in integrin diffusion given the diversity of 

proteins and protein density in the cell membrane. Integrins and insulin receptor localize in 

lipid nanodomains that have been considered important sites for signal transduction and 

receptor interaction [47-49]. When insulin receptor expression is reduced, changes in the 

composition of lipid nanodomains or partitioning of integrins into lipid nanodomains may 

favor integrin mobility. Similarly, insulin receptor also localizes with other RTKs, such as 

EGFR or platelet derived growth factor (PDGF) receptor, at lipid nanodomains. These 

receptors have known interactions with integrins. Insulin receptor RNAi may alter the 

organization of other RTKs, which in turn may increase integrin mobility. There is an 

increased concentration and enhanced activity of insulin-like growth factor 1 receptor in 
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insulin receptor depleted cells [46]; increased integrin mobility after insulin receptor RNAi 

may be indirectly the result of this type of cellular alteration, which is consistent with 

increased phospho-Akt levels after insulin receptor RNAi.  

After insulin receptor RNAi or insulin stimulation, elevated phosho-Akt levels were 

measured compared to native cellular conditions (Fig. 3). In order to unravel why different 

integrin diffusion properties were measured after these treatments, and to test if the absence 

of the insulin receptor alone is responsible for the changes in integrin diffusion after insulin 

receptor RNAi, a combination of insulin receptor RNAi and insulin treatment was performed. 

As measured by SPT, there is a 66% mobile integrin fraction and a 34% immobile fraction 

(Fig. 1). Out of 66 mobile integrin trajectories, 33 exhibited Brownian diffusion and 33 

exhibited confined diffusion (Fig. 1). There is small increase in the total mobile fraction 

compared to the fraction measured at a native cellular environment and 43% more integrins 

exhibiting Brownian trajectories. There is no statistically significant difference in integrin 

diffusion coefficient inside confined regions, in the confined domain size, and the duration in 

confined domains when compared to cells at native cellular environment (Table 1, Fig. 4). 

The combined effect of insulin receptor RNAi and insulin stimulation is a 23% smaller 

mobile fraction compared to when only insulin receptor RNAi was performed. While the 

reduced expression of the insulin receptor alters integrin diffusion properties, they are nearly 

(but not entirely) restored by the combined effects of insulin receptor RNAi and insulin 

treatment. This is hypothesized to be the result of other insulin signaling pathways that are 

activated under conditions of reduced insulin receptor expression, as discussed above. One 

area to be explored is the nature of these signaling pathways and what other alterations they 

cause to cell membrane dynamics.  
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Conclusion 

In summary, the cross-talk between αPS2CβPS integrins and insulin receptors affects 

integrin diffusion. The cellular changes that result when reducing the expression of the 

insulin receptor by RNAi have a more dominant effect on altering the lateral dynamics of 

integrins than insulin signaling in the presence or absence of the insulin receptor. 
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 Table 1. Average integrin diffusion coefficients, diameter of confined domains of diffusion, 

and duration in confined domains of diffusion as measured for 100 trajectories.  

 
No  

Treatment 
Insulin 

Receptor RNAi 
Insulin 

Stimulated 

Insulin 

Stimulated and  
Insulin 

Receptor RNAi 
Non-confined/Brownian motion 
Diffusion coefficient 

(µm
2
/sec)   0.1  0.1 (p=0.5) 0.1 (p=0.6) 0.1 (p=0.4) 

Confined motion 

Diffusion coefficient inside 

confined zones (µm
2
/sec)   0.01  0.02 (p=0.05) 0.01 (p=0.6) 0.01 (p=0.7) 

Diffusion coefficient outside 

confined zones (µm
2
/sec)   0.1  0.05 (p=0.8) 0.1 (p=0.7) 0.04 (p=0.4) 

Diameter of confined zones 

(µm)    0.110 0.160 (p=0.001) 0.120 (p=0.4) 0.120 (p=0.3) 

Duration in confined zones (s) 2.1  2.7 (p=0.005) 2.1 (p=0.7) 2.3 (p=0.3) 
a
 p-values in parenthesis were obtained from a Welch’s t-test comparison to No Treatment 

values  
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Fig. 1 Percentage of trajectories exhibiting confined diffusion, Brownian diffusion or 

immobility at native cellular conditions or after the indicated treatment. 
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Fig. 2 Trajectory exhibiting: a) confined diffusion with three confined domains as depicted 

by the dark circles; b) non-confined/Brownian diffusion with no confined zones. (c, d) Plots 

showing instantaneous diffusion coefficient (grey curve) and confinement index (black 

curve) for the trajectory on the left. Dashed lines in c and d indicate the critical threshold 

value of the confinement index (L=3.16). The duration of the trajectory depends on the time 

between quantum dot blinking events, which is statistically random. For all data sets in this 

study, the average duration and standard deviation of all trajectories was 14 ± 8 s.  
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Fig. 3 Western blot image of phospho-Akt and actin level in S2 cells.  A plus indicates 

αPS2CβPS expression (1, 2, 5, 6), insulin receptor RNAi treatment (5, 6), or insulin 

stimulation (1, 3, and 5) 
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Fig. 4 Histograms of the size of confined domains (a-d) and the duration in confined domains 

(e-h).   (a ,e) no treatment; (b, f) insulin receptor RNAi; (c, g) insulin stimulation; (d, h) 

insulin receptor RNAi and insulin stimulation. The frequency was normalized to the total 

number of confined mobile trajectories. 
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CHAPTER 5: GENERAL CONCLUSIONS 

Single particle tracking is an important tool to measure the lateral mobility of cell 

membrane receptors. Because of SPT technique’s high spatial resolution and the ability to 

measure individual receptor diffusion property, the information obtained from SPT can 

provide information that is often obscured by ensemble technique FRAP. In addition to 

revealing more detailed information, SPT data will help to better understand the results 

obtained by FRAP. The information obtained from these two techniques, when taken 

together, provides valuable insights on the lateral mobility of receptors. The thesis work 

presented here utilizes SPT technique in combination with molecular biology technique RNA 

interference to measure the lateral mobility of integrins at different cellular conditions.  

The second chapter underscores the role of ligand affinity on integrins’ lateral 

diffusion by addressing the lateral mobility results of wild-type and high-ligand affinity 

integrins obtained from SPT and FRAP techniques. As measured by SPT, high-ligand 

affinity integrins exhibited 75 % slower diffusion coefficient and 22 % lower mobile 

population when compared to wild-type integrins. However, no statistical difference in 

diffusion coefficient and mobile fraction was measured by FRAP. The difference in results 

was explained by the different population of integrins that are measured by these two 

techniques. Only ligand-bound integrins are measured by SPT whereas both ligand-bound 

and unbound are measured by FRAP. Therefore, based on the data, subset of ligand-bound 

high-ligand affinity integrins exhibits slower diffusion and lower mobile fraction compare to 

the ligand-bound wild-type integrins.  

Chapter 3 combines SPT with RNA interference to address the influence of three 

cytoplasmic (Vinculin, FAK, ILK) and two membrane proteins (EGFR, Notch) role in 
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integrins’ lateral diffusion. This study reports the increase in the number of ligand-bound 

integrins’ mobile population after systematically reducing the concentration of targeted 

proteins. The percentage of integrins’ mode of motion relative to total mobile population 

didn’t alter after vinculin and EGFR concentration reduction. There was an increase of 9 to19 

% increase in constrained population after Notch, ILK, or FAK concentration reduction. The 

five targeted proteins in this study are responsible for altering integrins’ lateral mobility 

when present at native concentration. 

Continuing the use of SPT and RNA interference technique, chapter 4 highlights the 

affect of insulin receptor and insulin signaling on integrins’ lateral dynamics. No profound 

effect in integrins’ lateral mobility was observed after the activation of signaling cascades 

initiated by insulin stimulated cells. However, after reducing the concentration of insulin 

receptor, integrins’ mobile population increased indicating that the insulin receptor is 

responsible for constraining integrins’ lateral mobility through direct association/interaction.  

The techniques and the approaches used in this thesis work can be easily extended to 

the study of other membrane receptors in the same system as in S2 cells or in different 

systems such as mammalian cells. Similarly, one aspect that can be explored further would 

be the area of signaling effects on integrins’ lateral mobility. For example, the effect of other 

signaling cascades initiated by growth factors and their receptors such as epidermal growth 

factor receptor (EGFR) or platelet derived growth factor (PDGF) could be explored.  
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APPENDIX: DEVELOPMENT OF A COMPREHENSIVE NEAR INFRARED 

SPECTROSCOPY CALIBRATION MODEL FOR RAPID MEASUREMENTS OF 

MOISTURE CONTENT IN MULTIPLE PHARMACEUTICAL PRODUCTS 
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Abstract 

Near infrared (NIR) spectroscopy has been widely used for the determination of water 

content in a wide variety of samples. With few exceptions, all methods employ a calibration 

model developed and applicable for a single product. The current study describes a NIR 

method using a single, comprehensive calibration model to predict the water content in 

tablets containing different active pharmaceutical ingredients (API). The calibration model 

was developed for water content range of 2 - 13% w/w using tablets containing three 

different APIs and different formulation compositions. To develop a robust comprehensive 

model, individual calibration models were sequentially developed starting from a simple 

model for one product to including tablets from all three projects in the final model using 
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partial least square analysis method. Data pretreatments and spectral region selections were 

performed during the method development to optimize the number of factors and the 

correlation coefficients for cross-validation and prediction by the comprehensive model. The 

model reliably predicted the water content in tablet samples of these three products, and can 

be updated for water measurements of new drug products by adding to the model two 

samples of the new product for calibration purpose.   

 

Keywords  

Near infrared spectroscopy, comprehensive model, moisture content, water analysis, tablets, 

pharmaceutical products 

 

1. Introduction 

Near infrared spectroscopy as an analytical tool has been widely used in 

pharmaceutical analysis for many years [1-9]. Over the last decade or so, pharmaceutical 

companies have been progressively adopting the Quality-by-Design principles expected by 

regulatory agencies[10] and implementing Process Analytical Technologies (PAT) to achieve 

full understanding of manufacturing processes and quality attributes of products [11-13]. NIR 

spectroscopy, capable of holistic and non-destructive sample analysis, has proven to be an 

invaluable PAT tool with distinctive advantages of little sample preparation, fast data 

acquisition, and flexibility with probes for at-line, on-line or in-line applications [12, 14-16]. 

Typical applications include timely monitoring of critical quality attributes (CQA) of drug 

products such as moisture content, blend and content uniformity and coating thickness [7, 17-

21]. 
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Water can affect the shelf life, physical and chemical stability and overall quality of 

pharmaceutical products [22-24]. The traditional wet chemistry method such as Karl Fischer 

titration for water content measurement is time-consuming, laborious and sample destructive. 

KF titration can be costly due to the use of organic solvents and treatment of chemical waste 

generated from the solvents use and destroyed samples. NIR spectroscopy, with its intrinsic 

advantages, is well suited for water determination because water shows strong absorption 

bands in NIR region that can provide the sensitivity and reproducibility needed for accurate 

measurements. Depending on the chemical and physical environment of the water molecule, 

the two most prominent absorption bands for water are the first overtone band of OH 

stretching at around 6800-7100 cm
-1

 (1470-1408 nm) and the combination band of OH 

stretching and bending at around 5100-5300 cm
-1

 (1960- 1887 nm) [19, 22, 25]. Numerous 

reported NIR methods for water analysis clearly demonstrated the wide applicability of this 

technique to materials from small molecule APIs and drug products to biologics [9, 20, 22, 

26-29].  

Quantitative water analysis by NIR spectroscopy is achieved through multivariate 

calibration methods to extract relevant chemical information from complex spectroscopic 

data and build calibration models for quantitation. Because the validity of a calibration model 

could be jeopardized by changes in instruments or sample composition and matrix [30], most 

of NIR water methods employ one calibration model for each relatively well-defined type of 

product or process to ensure the method accuracy. A unique example of universal 

quantitative models for determination of moisture content in beta-lactam powder injections 

by NIR was reported for feasibility and limits of the models and model extensions when 

applied for samples of same INN (International Nonproprietary Name) from diverse 
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formulations and sources [31]. This demonstrated that universal models can be developed to 

accommodate physical and chemical variations of the products, however, they quickly 

became very complicated with the increase of multiplicity of spectral variations. In addition, 

this example only utilized samples containing the same active ingredient.   

For the present study, a comprehensive model for water analysis in compressed 

tablets was built with a set of standards that encompass significant variations in compositions 

and can reliably predict the water content in tablets differing in shape, size and containing 

different excipients and APIs. Performance between the individual and the comprehensive 

models was compared based on root mean square error of calibration (RMSEC), root mean 

square error of cross-validation (RMSECV), root mean square error of predication (RMSEP) 

and relative square errors of calibration and predication (RSEC and RSEP). No significant 

deterioration in the performance of the model was observed even as more products were 

included, although the minimal number of factors did increase as expected due to the 

increased complexity of the models. This method can be expanded for new products by 

updating the model with only two samples of the new products, and offers a fast and 

effective way to determine the moisture content in tablets to support product development. 

 

2. Materials and methods 

2.1. Materials 

Uncoated tablets produced in house at Genentech (South San Francisco, CA, USA) 

with three different proprietary Genentech APIs were used for the study. API I and API III 

are both highly hygroscopic. Tablets containing API I were exposed to different humidity 

levels at ambient temperature to generate the reference samples with moisture level between 
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2 and 13% w/w for building NIR calibration method. The main excipient in all the tablets is 

microcrystalline cellulose (Avicel PH101, 102 or 103) purchased from FMC Biopolymer 

(Philadelphia, PA, USA). Tablets of API II also contained lactose monohydrate (Foremost 

Farms USA, Baraboo, WI, USA) at the amount similar to MCC. All tablets were 

manufactured using roller compaction process under different process conditions that were 

optimized for each product through Design of Experiments (DOE).   

2.2. FT-NIR instrument and data acquisition 

NIR spectra of the tablets were acquired with an Antaris II Fourier-Transform Near 

Infrared (FT-NIR) analyzer from Thermo Scientific (Madison, WI) equipped with Integrating 

Sphere and an Indium Gallium Arsenide (InGaAs) detector in diffuse reflectance mode. 

Thermo Scientific OMNIC software version 8.3 accompanying the instrument was used for 

the collection of all spectra. One spectrum was collected for each face of the round, oval or 

oblong shaped tablet. Each spectrum was the average of 16 scans in the range of 10,000 cm
-1

 

to 4000 cm
-1

 with 8 cm
-1

 resolution. For each tablet, spectra from the two faces were 

averaged as one for calibration or quantitation.  

2.3. Karl Fischer  

Coulometric Karl Fischer 851 Titrando (Metrohm, Switzerland) equipped with 774 

oven sample processor and Tiamo 2.3 software was used as the reference method to measure 

water content in the tablet samples. Each tablet was weighed, ground into powder, transferred 

to titration vials and sealed for the KF measurements. Precaution was taken to complete the 

grinding, powder transfer and vial sealing within 5 minutes for each sample after NIR spectra 

collection. This was especially important for tablets of API I and III due to their high 
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hygroscopicity, so that potential changes in water content because of the sample exposure to 

ambient conditions can be minimized.  

2.4. NIR Calibration model 

In order to build the calibration models over an expanded range of moisture content, 

tablets containing the API I were exposed to different humidity levels at ambient temperature 

to generate the reference samples with moisture level between 2 and 13% w/w. Samples of 

the lowest moisture content were stored with desiccant, and samples stored under ambient 

conditions without desiccant had moisture level of ~5% w/w. Higher moisture levels (>5% 

w/w) were obtained by exposing the tablets overnight to various high humidity conditions 

created by saturated salt solutions. These reference samples were analyzed by NIR and KF 

for moisture content. Of the thirty tablets analyzed, twenty-five were used for building NIR 

calibration models and five were used for validation of the models to allow the calculation of 

RMSEP and performance index (PI) values of the models. Table 1 summarizes the reference 

samples and their moisture contents by KF.  

Chemometric software package TQ Analyst version 8 by Thermo Scientific (Madison, 

WI) was used to build the NIR calibration models. The models were built with partial least 

square (PLS) method by assigning KF data to the corresponding NIR spectra. Spectral 

pretreatments that were performed to build each calibration model included Savitzky-Golay 

smoothing with no, first-degree or second-degree derivative. Seven data points and third 

order polynomial were used for Savitzky-Golay smoothing. The best model was chosen 

based on the resulting chemometric parameters. 

3. Results and Discussions 

3.1 Development of the calibration models 
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The main goal of the study is to develop a single calibration model that can predict 

the water content for drug product samples containing different API. Round and oblong 

shaped tablets of API I as presented in Table 1, representing different strengths, were used to 

develop the first calibration model. Fig. 1 is the overlaid NIR spectra for these calibration 

samples with and without the first derivative pretreatment with Savitzky-Golay smoothing. 

Two spectral regions related to water absorption (5015-5303 cm
-1

, 6503-7008 cm
-1

) were 

selected to build the calibration model I, and the strongest correlation in the moisture level 

and signal intensity was observed at 5000-5500 cm
-1

 region that is attributed to the 

combination band of OH stretching and bending. 

The calibration model I shown in Figure 2 (a) used 4 PLS factors, and the root mean 

square error of calibration (RMSEC) was 0.177 with correlation coefficient of 0.998. 

Individual calibration models using the round or oblong tablets for API I only were compared 

with the model I to assess any potential effect of tablet shape on model performance. Table 2 

summarized the parameters for the models with different spectral pre-treatment approaches 

and Savitzky-Golay smoothing.  

For the model using round tablets only, pre-treating the spectra significantly reduced 

the RMSEC; however, the RMSEP was much higher than the RMSEC indicating that the 

model was likely over-fitted.  For the oblong tablets, first derivative resulted in the best fitted 

model with RMSEC 0.137 and RMSEP 0.13. The combined model I had higher RMSEC 

(0.177) than both due to the increased complexity with all the samples. However, the 

RMSEP value was similar for all three models of API I tablets, suggesting that the tablet 

shape had limited impact on the NIR spectra and thus the validity of the calibration model I.  
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The calibration model I was used to predict the water content in tablets of API I, API 

II, and API III. As expected, the calibration model I was able to reliably predict the water 

content of API I tablets, however failed to predict the correct water contents for tablets of 

API II and API III. This is not surprising considering that the change in API probably caused 

significant changes in the NIR spectra and thus invalidated the calibration model built with 

API I samples alone.  

To render the calibration model useful for more than one product, calibration model I 

was updated using the reference samples of API II and API III tablets. Model updating is a 

common approach in incorporating differences or changes in samples or NIR instruments and 

enhancing the applicability of a calibration model for samples of different matrix and 

instrument settings [30]. Similar to the tablets of API I, the main component in tablets of API 

II and API III is microcrystalline cellulose (MCC). Compared to the other two products, 

tablets of API II also contained significant amount of lactose monohydrate (~40% wt) and 

had much lower drug loading (10% wt).  All tablets contain other minor ingredients needed 

for the performance of the tablets; however, the most significant difference is the active 

pharmaceutical ingredients, the contribution of which to the NIR spectra and thus the 

calibration model must be adjusted in order to maintain the validity of the models. The model 

updated using tablets of API II was referred to as calibration model II, and the model updated 

using tablets of both API II and API III was referred to as calibration model III. Fig. 3 (a) is 

the overlaid NIR spectra for tablets of all three APIs, and Fig. 3 (b) is the spectra with first 

derivative pre-treatment. 

Calibration model II was built with tablets of both API I and API II, including tablets 

of different shapes that represent different strengths for each product. Fig. 3 is the overlaid 
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NIR spectra of all calibration samples, clearly showing the higher baseline and different 

spectral features for the spectra of API II samples. This may be due to the presence of lactose 

monohydrate in these samples but not those of the other two APIs.  Because of these 

significantly different spectral features, one extra spectral region (5321-5601cm
-1

) was used 

to build the calibration model II in addition to the two regions (5014-5303cm
-1

, 6503-

7008cm
-1

) used for the calibration model I. This model used 6 PLS factors and showed good 

quality of calibration and predication (RMSEC = 0.123, RMSEP = 0.186). Without this third 

region (5321-5601cm
-1

), a simpler model with only three PLS factors could be established; 

however, the quality of the model was much worse (RMSEC = 0.382, RMSEP = 0.387). API 

II is not hygroscopic, and its tablets equilibrated to about 5% w/w of water when stored 

under normal laboratory conditions. As shown in Table 1, three tablet samples of API II were 

added to the calibration model, resulting in total of 23 individual calibration standards and 5 

validation standards (Fig. 2 (b)). Compared to the model I, the RMSEC of the updated model 

II actually slightly decreased to 0.123 from 0.177 for the model I, however the number of 

factors used for the model increased from 4 to 6.    

To further expand the scope of the calibration model and applicability of the method, 

calibration model III was built with the addition of API III tablets to the calibration standard 

set used for calibration model II. API III is very hygroscopic, and moisture absorption can 

result in various polymorphs for the API. For this study, only tablets stored with desiccants 

were used, since these were the only tablets manufactured and available. Because of the 

complicated polymorph situation, no samples for this API were prepared by exposing to 

different humidity levels. The addition of two tablet samples for API III brought the total 

number of individual calibration standards to 25 (Table 1). The calibration model III was 



www.manaraa.com

109 

 

 

shown in Fig. 2 (c). For this calibration model, only two main spectral regions related to 

water absorption (5014-5302 cm
-1

 and 6503-7008 cm
-1

) were selected (Fig. 3). Even though 

one additional product was added to the calibration set, the model remained relatively simple 

with 6 factors and RMSEC and RMSEP being 0.193 and 0.233, respectively. Inclusion of the 

third region (5321 - 5601 cm
-1

) that was used for model II resulted in a slightly more 

complicated (8 factors) and over-fitted calibration model (RMSEC = 0.083, RMSEP = 

0.212), which would reduce the reliability of prediction when the unknown samples were 

analyzed.  

The comprehensive calibration model III used 6 PLS factors, same as the model II. Its 

RMSEC was 0.193, slightly greater than that of the model I. Both parameters strongly 

suggested that the addition of another set of different samples did not significantly increase 

the complexity of the calibration method, and it is possible to continue expanding the scope 

of the method to samples of additional APIs.  

3.2 Validation of the Calibration Models 

All NIR calibration models need to be validated for accuracy of predication before 

being used for actual analysis. Independent validation samples are generally selected to 

verify and confirm the quality of the calibration model. For this study, four tablet samples of 

API I and one tablet sample of API II were analyzed along with the calibration samples but 

utilized as validation standards to obtain the root mean square error of prediction (RMSEP) 

and the performance index [25] values. The calibration models were also cross-validated 

using the leave-one-out cross-validation approach. Although not widely used, the 

performance index (PI) measures how accurately a calibrated method can quantify or classify 

the validation standards and complements RMSEP in evaluating the performance of a calibration 

method for unknown sample analysis. The PI was calculated based on the difference of the 
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calculated vs. the actual moisture content; a PI value near 100 indicates a good method. 

Table 3 summarized the validation standards used, the RMSEP and PI for each of the three 

calibration models.  

The PI values slightly decreased from the Model I to III, however were all above 90. 

RMSEP showed a slight increase from Model I to III. For each model, the RMSEP value was 

comparable to the RMSEC value (Table 4), a good indicator on the effectiveness of the 

models for the analysis of the unknown samples. The quality of calibration and predication of 

these calibration models was also demonstrated by the low Relative Standard Errors (RSE) as 

shown in Table 4 (RSEC for calibration and RSEP for predication). 

3.3 Comparison of the Calibration Models 

The three calibration models were compared to see how the performance would have 

deteriorated as the sample variety increased. The three models primarily differ in the number 

of standard samples incorporated from different drug product tablets and the region selected 

for calibration. Table 4 shows the chemometric parameters obtained from three calibration 

models. The values of RMSEC/P and RSEC/P clearly showed that the quality of calibration 

and predication did not appear to significantly deteriorate as the models became increasingly 

complicated. On the other hand, RSMECV for all three models was higher than RSMEC. 

This is consistent with NIR methods reported in the literature [16, 22, 32]. The extent of the 

difference between RMSEC and RMSECV may be due to the limited number of validation 

standards employed, especially for the comprehensive model III. 

While building the models, the spectra in the standard samples were subjected to 

different pretreatment and smoothing methods. The model with less number of factors and 

higher performance index value was selected as the final model for each calibration set. The 
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PRESS (predicted residual error sum of squares) diagnostic from the software was used to 

obtain the RMSECV value and to observe the number of factors used in each model (Fig. 4). 

The PRESS diagnostic used the cross validation technique to calculate a PRESS value for 

each factor that may be used to generate the calibration model in PLS method. And the 

PRESS value normally decreases each time a factor was added to the calibration model if the 

factor is providing useful information for the calibration. For each model, the number of 

factors as suggested by the software was used. The loading spectra were checked to make 

sure that the factors with significant noise were not used in the model.  

The robustness of the calibration models, as the calibration standards expanded to 

include more samples of different API and compositions, was also demonstrated by the 

analysis of tablet samples of API I using the three models (Table 5). 

The results using the three calibration models for the same batches of samples of API 

I tablets were in excellent agreement with each other, strongly suggesting that the increased 

complexity of the calibration sample set did not compromise the quality of the calibration 

model. Except one oblong tablet sample with high water content (#10), all results based on 

NIR analysis were within 0.5% absolute value of KF measurements. In addition, the 

precision in measurements for the three NIR models was very similar based on the standard 

deviations for replicate measurements of the API I samples. The measurement precision and 

accuracy using the comprehensive calibration model evidently demonstrated the applicability 

of this model for the moisture analysis of complicated samples with differences in 

compositions and manufacturing process.  
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3.4 Prediction of moisture level for unknown samples 

As the main purpose of the study was to develop a model that can be used for water 

analysis for drug product samples of difference APIs, the model that serves the intended 

purpose was model III. Included in Table 6 are the results from NIR analysis using the model 

III for independent samples of API I, II and III. The standard deviation for all results was 

also included to show the degree of the variation in the water measurements by both NIR and 

KF.  Except sample #10, all average predicted results using the calibration model III were 

with 0.5% (absolute difference) of the average results measured by KF. The absolute 

difference over 1% (or ~12% relative) for sample #10 may be attributed to the inherent 

difference in water content from tablet to tablet of this sample and the possible inaccuracy in 

the KF measurements for this particular sample because of the rapid loss of water during the 

sample preparation for KF measurement. However, the predicted results with the 

demonstrated degree of accuracy were still valuable in quickly assessing the overall quality 

of a drug product considering the ease and speed of NIR analysis of intact tablets. Good 

precision (RSD < 3%) was also achieved by NIR measurements for all samples except API I 

sample #10 and the API III sample. For the API I sample #10, both KF and NIR 

measurements had worse precision than other samples; therefore, the poor precision for the 

NIR method may be attributed to the samples and the KF measurements as discussed above. 

The precision of KF measurements for the API III sample was comparable to others (except 

API I sample #10), and the poor precision on the NIR measurements pointed to the 

challenges in moisture analysis for highly hygroscopic materials even for techniques such as 

NIR where sample exposure time to the environment could be minimized. 
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4. Conclusions 

A comprehensive calibration model was built for the analysis of water content in 

tablets containing different active ingredients. The model was shown to be robust and 

accurate with good precision in moisture analysis for tablets over the range of 2-13% w/w, 

and can potentially be further expanded for other drug products. The key in expanding the 

method applicability is to continuously update the model with new samples or products to be 

analyzed. The current study showed that this can be accomplished by adding as few as two 

samples to the model for the new product. As more products are brought into the scope of the 

method, the calibration model becomes more complicated in terms of number of PLS factors 

to be used and the degree of decrease in the performance index and RMSEC/CV/P. It 

remains to be explored on the number of factors that can be used before a new model 

becomes a necessity.  

This method could be applicable to samples or dosage forms other than tablets, and 

could provide a fast and reliable approach for moisture analysis where many samples need to 

be analyzed and compared quickly to support pharmaceutical development. The speed of 

analysis by NIR spectroscopy and the non-destructive nature of the technique make it 

especially attractive for water determination of hygroscopic samples.    
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Table 1 Reference Samples with moisture content in the range of 2-13% (w/w). 
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Table 2 Chemometrics results for models using round or oblong tablets of API I only. 

 

Sample Spectral  
Pre-treatment 

RMSEC 

and 

coefficient 

RMSEP 

and 

coefficient 
Factors 

Used Regions 

Round 

Tablets 

No 0.15; 

0.999 0.151; 1 3 
5014-5303, 

5321-5601,  
6503-7008 

First 

Derivative 0.0134; 1 0.205; 1 5 5014-5303, 

6503-7008 

Oblong 

Tablets 

First 

Derivative 
0.137; 

0.998 0.13; 1 2 5014-5303, 

6503-7008 
Second 

Derivative 
0.119; 

0.998 0.127; 1 2 5014-5303, 

6503-7008 
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Table 3 Summary of RMSEP and PI for the calibration models I, II and III. 

 

Calibration Model Validation Standards RMSEP PI 

I 4 (API I) 0.143 95.6 

II 5 (API I and II) 0.186 94.3 

III 5 (API I and II) 0.233 92.8 
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Table 4 Chemometric parameters obtained from three calibration models. 

 

 

 Calibration I Calibration II Calibration III 
Pretreatment 1

st
 Derivative 1

st
 Derivative 1

st
 Derivative 

Smoothing Savitzky-Golay Savitzky-Golay Savitzky-Golay 

Region  (cm
-1

) 5014-5303, 6503-7008 5014-5303, 5321-5601, 

6503-7008 
5014-5302, 

6503-7008 
RMSEC 0.177 0.123 0.193 

RMSEC Corr.  0.998 0.998 0.997 
RMSEP 0.143 0.186 0.233 

RMSEP Corr.  0.997 0.995 0.991 
PLS Factors 4 6 6 
RMSECV 0.331 0.371 0.413 

RMSECV Corr.  0.993 0.989 0.988 
RSEC 2.55 % 1.83 % 3.00 % 

RSEP 2.03 % 2.77 % 3.50 % 
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Table 5 Comparison of actual % moisture (KF) and predicted % moisture (NIR) for API I 

tablets using three calibration models
a 

 

Sample 

Type 
Sample 

# 
% wt 

(KF) 
b

 
% wt (NIR)

c

 
Model I Model II Model III 

Round 

1 2.95 2.97 ± 0.08 3.02 ± 0.06 2.84 ± 0.07 
2 4.41 4.16 ± 0.05 4.26

d 
± 0.06 4.20

d
 ± 0.03 

3 5.56 5.44 ± 0.08 5.20 ± 0.10 5.47 ± 0.08 
4 6.35 6.21 ± 0.15 6.00 ± 0.13 6.26 ± 0.15 
5 12.59 12.18 ± 0.28 12.09 ± 0.26 12.18 ± 0.28 

Oblong 

6 3.66
e
 3.32 ± 0.17 3.27 ± 0.11 3.35 ± 0.04 

7 5.27 5.19 ± 0.11 5.18 ± 0.12 5.20 ± 0.13 
8 6.17 6.15 ± 0.14 6.23 ± 0.20 6.10 ± 0.12 
9 7.03 6.98 ± 0.06 6.99 ± 0.07 6.92 ± 0.06 
10 9.57 10.78 ± 1.14 10.80 ± 1.39 10.74 ± 1.15 

 
a
 All values shown were average ± standard deviation based on replicate measurements for 

each sample 
b
Average of two independent measurements for round tablets, and average of three 

independent measurements for oblong tablets; 
c
 Average of ten independent measurements for round tablets, and average of three 

independent measurements for oblong tablets; 
d
 Average of eight independent measurements; 

e
 Average of two independent measurements. 
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Table 6 Comparison of actual % moisture (KF) and predicted % moisture (NIR) for tablets 

of all   three APIs using calibration model III 

 

Sample 

Type 
Sample 

# 
% moisture   

(KF) 
a

 
% moisture  

(NIR)
b

 
% RSD NIR 

measurement 

API I 
Round  

1 2.95 ± 0.25 2.84 ± 0.07 2.46 

2 4.41 ± 0.01 4.20 ± 0.03 0.71 

3 5.56 ± 0.06 5.47 ± 0.08 1.46 

4 6.35 ± 0.03 6.26 ± 0.15 2.40 

5 12.59 ± 0.32 12.18 ± 0.28 2.30 

API I  
Oblong 

6 3.66 ± 0.10 3.35 ± 0.04 1.19 

7 5.27 ± 0.06 5.20 ± 0.13 2.50 

8 6.17 ± 0.04 6.10 ± 0.12 1.97 

9 7.03 ± 0.07 6.92 ± 0.06 0.87 

10 9.57 ± 0.76 10.74 ± 1.15 10.71 

API II, 

Round 11 5.07 ± 0.02 5.16 ± 0.13 2.52 

API II, Oval 12 4.71 ± 0.02 4.61 ± 0.09 1.95 

API III 13 2.22 ± 0.05 2.30 ± 0.24 10.43 

 
a
 Average ± standard deviation of two independent measurements for API I round and API 

III tablets, and of three independent measurements for others. 
b
 Average ± standard deviation of ten independent measurements for API I round tablets, of 

four independent measurements for API III samples, and of three independent measurements 

for others. 
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Fig. 1.  (a) Overlaid NIR spectra of API I tablet samples used for calibration; (b) overlaid 

NIR spectra with first derivative pretreatment. 
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Fig. 2. Calibration plots for three models. (a) Model I. (b) Model II. (c) Model III. Actual = 

% (w/w) moisture by KF; calculated = % (w/w) moisture by NIR.  
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Fig. 3. (a) Overlaid spectra of all tablet samples used for calibration that includes API I, API 

II, API III; the spectra with higher baseline (the one on the top of all spectra) were those of 

API II tablets; (b) 1st derivative pretreatment overlaid spectra of all tablet samples used for 

calibration; the three spectra that were not totally overlapped (visible ~ 5100 cm
-1

 region) 

were those of API II tablets.  
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Fig. 4. PRESS plot for calibration model III.  
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